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Abstract Owing to their limited accuracy and narrow applicability, current antimicrobial peptide

(AMP) prediction models face obstacles in industrial application. To address these limitations, we

developed and improved an AMP prediction model using Comparing and Optimizing Multiple DEep

Learning (COMDEL) algorithms, coupled with high-throughput AMP screening method, finally reaching

an accuracy of 94.8% in test and 88% in experiment verification, surpassing other state-of-the-art models.

In conjunction with COMDEL, we employed the phage-assisted evolution method to screen Sortase

in vivo and developed a cell-free AMP synthesis system in vitro, ultimately increasing AMPs yields to

a range of 0.5e2.1 g/L within hours. Moreover, by multi-omics analysis using COMDEL, we identified
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Lactobacillus plantarum as the most promising candidate for AMP generation among 35 edible

probiotics. Following this, we developed a microdroplet sorting approach and successfully screened three

L. plantarum mutants, each showing a twofold increase in antimicrobial ability, underscoring their

substantial industrial application values.

ª 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Pharmaceutical Association and

Institute of Materia Medica, Chinese Academy of Medical Sciences. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Antimicrobial peptides (AMPs), a class of short amino acid
polymers important for the innate immune response, are generated
by a wide range of species, from prokaryotes to eukaryotes1,2.
They exhibit rapid and broad-spectrum antimicrobial activity
against various microorganisms, especially pathogenic ones,
making them attractive substitutes for traditional antibiotics and
preservatives. Importantly, AMPs are less prone to resistance
development compared to conventional antibiotics, positioning
them as potentially revolutionary in addressing the major concern
about antibiotic overuse and the emergence of super-resistant
bacteria3,4. Beyond their antimicrobial properties, recent studies
have also discovered that many AMPs possess other properties
involved in anti-inflammation, wound-healing and immunomod-
ulatory, further spotlighting them as research hotspots for devel-
oping novel therapeutic agents for infectious diseases2,3.

Despite their intriguing medicinal and antiseptic potential,
there are two primary challenges regarding AMP supplies. One
challenge is that the relatively specific antibacterial preference of
many available AMPs narrows their application range2. To address
this, recent studies have leveraged computational technologies to
predict and design broad-spectrum AMPs5,6. For instance,
Antibp2 employs the Support Vector Machine (SVM) approach to
predict and classify AMPs based on their amino acid composition,
achieving high accuracy in discovering efficacious AMPs against
antibiotic-resistant bacteria7. Similarly, iAMP-2L utilizes the
pseudo amino acid composition and the fuzzy k-nearest neighbor
algorithm to effectively distinguish and categorize AMPs ac-
cording to their functions8.

In recent years, artificial intelligence (AI) approaches, partic-
ularly deep learning technologies, have been widely applied in
biological fields, including protein tertiary structure prediction,
enzyme molecular design, and gene editing efficiency fore-
casting9-11. Notably, these technologies excel at autonomously
learning from sequence and structural features, offering ideal
screening and design tools with the benefits of high accuracy and
efficiency12. The establishment and ongoing development of AMP
databases, such as APD3, have facilitated the creation and
employment of a series of powerful machine learning tools based
on big data classification in AMP discovery and design13-18. For
instance, Deep-ABPpred, a deep learning-based classifier
designed for novel antibacterial peptides (ABPs) identification,
has been applied to filter ABPs in the proteome of Streptococcus
bacteriophages19.

However, current deep learning methods fall short when it
comes to large-scale prediction and screening of AMPs, as evi-
denced by several limitations in existing studies. Firstly, these
models often r often rely on oversimplified representations for
feature extractionda critical step affecting model performance20,
resulting in a failure to fully capture the complexity inherent in
peptides. Secondly, the absence of a unified benchmark dataset for
both the training and test processes probably introduces biases in
the evaluation and comparison of model performance16,19,21.
Thirdly, the compatibility of existing models is limited. While
they may perform well on certain datasets, they face difficulties
with others due to overfitting, model complexity, and suboptimal
feature selection16,22,23. Lastly, few models take toxicity factors
into account, which increases the potential risk of pathogenicity in
the process of AMP discovery24,25.

Another challenge lies in the complex and inefficient synthesis
of AMPs, significantly driving up their production costs26,27.
Currently, chemosynthesis and microbial fermentation are the two
main ways for peptide synthesis. The chemosynthesis method,
known as solid-phase peptide synthesis, extends the peptide chain
through the sequential addition of amino acids in a cyclic manner,
ultimately achieving the desired peptide sequence28. However, this
method is severely limited by peptide length, and often yields
insufficient quantities of AMPs in industrial production.

On the other hand, microbial fermentation has been utilized for
the large-scale industrial production of certain AMPs, since
several probiotics are capable of substantially synthesizing natural
AMPs29,30. However, due to the inherent characteristics of AMPs,
these natural AMPs from microorganisms often exhibit relatively
specific antibacterial preference. For example, Nisin, the only
bacteriocin permitted as a food additive worldwide and produced
by Lactococcus lactis, shows specific activity against Gram-
positive bacteria31.

To comprehensively solve these limitations, we developed an
AMP identification model, named Comparing and Optimizing
Multiple DEep Learning (COMDEL), by leveraging an integrated
training approach based on neural network algorithms (NNAs) and
a high-throughput AMP screening method. COMDEL not only
offers high accuracy but also ensures security. We then employed
COMDEL in the dual tasks of screening broad-spectrum AMPs in
edible crops, as well as screening probiotics for high AMP pro-
duction (Fig. 1). Building upon this, we further utilized directed
evolution and cell-free AMP synthesis (CFAS) technologies to
significantly boost AMP yields both in vivo and in vitro.
2. Materials and methods

2.1. Data collection

AMP and non-AMP data were collected as previously
described16,19,21, with minor modifications. Briefly, our AMP
dataset was mainly collected from three available AMP databases
containing most of AMP sequences from different sources. These
include 8097 sequences from ADAM17, 3414 from APD315 and

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 The schemes of COMDEL establishment and applications. (A) Schematic depiction of COMDEL development. The AMP and

non_AMP Data were collected, followed by which the features of amino acids properties and peptide structure were extracted and filtered.

Through the NNA picking and feature weighting, the model was trained and tested with feedback. This process resulted in the final version of

COMDEL, characterized by high accuracy and precision. (B) Application of COMDEL in mining AMPs and probiotics. For mining AMPs and

probiotics, omics data encompassing genomes, transcriptomes, and proteomes were compiled. These data were processed to deduce peptide

expression levels, which were then evaluated by the COMDEL model to identify potential AMP candidates for subsequent biosynthesis and

validation. In the context of natural AMP mining, COMDEL was employed to pinpoint AMP candidates with high expression in edible crops.

These candidates were synthesized in vivo using an SrtA mutant evolved through the PANCE technology, and in vitro via a CFAS system. In the

realm of probiotic screening, COMDEL was utilized to filter edible probiotics with elevated AMP expression. Subsequently, the probiotic mutants

with increased AMP yields were obtained by using the FADS technology.
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3698 from CAMPR432,33. Our focus was solely on peptides
comprising typical amino acids with a length of 10e300, so the
peptides containing non-standard amino acids or those less than 10
or exceeding 300 in length were eliminated. These AMP data were
merged, and the duplicated and similar sequences (with an identity
greater than 90%) were removed, eventually retaining 5965 se-
quences in the AMP dataset.

The non-AMP dataset was collected from UniProt database
(https://www.uniprot.org/), excluding any entry identified as
antimicrobial, antibiotic, antiviral, antifungal, effector, or
excreted. We conducted a search in the UniProt database for
proteins that had been manually inspected and annotated, and
which ranged from 10 to 300 amino acids in length. Our search
excluded proteins associated with terms such as antimicrobial,
antibacterial, anti-TB, antitoxin, as well as terms like secreted,
excreted, and effector. Following this refinement, we further
refined our dataset by eliminating any sequences featuring non-
standard amino acids and removing the duplicated and similar
sequences in the dataset. After these steps, we retained a total of
5910 unique non-AMP sequences.

The AMP and non_AMP datasets were split into two sets at a
ratio of 20:5, with 4772 AMPs and 4728 non-AMPs kept in the
training dataset, which was utilized to build the COMDEL
models. The remaining 1193 AMPs and 1182 non-AMPs were

https://www.uniprot.org/
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kept in the test dataset, which was used to evaluate the perfor-
mance of the COMDEL models.

Probiotics representative genomes, transcriptome and prote-
ome data were derived from DNA-seq and RNA-seq data in the
NCBI GEO DataSets (https://www.ncbi.nlm.nih.gov/gds). Protein
data from Glycine max and Zea mays were downloaded from the
Ensembl Plants database (https://plants.ensembl.org/index.html).

2.2. Construction of the COMDEL model

To accurately extract the features, the modlAMP Python pack-
age34 was employed to calculate 56 distinct physicochemical at-
tributes from all primary sequences, with those showing a
correlation lower than 0.9 being retained. Subsequently, 13
different binary classification algorithms were tested in our model
to distinguish AMPs in training dataset, including Logistic
Regression (logreg)35, Decision Tree Classifier (cart), Gaussian
NB (nb), Linear Discriminant Analysis (lda)36, and Quadratic
Discriminant Analysis (qda)37, Support Vector Classifier Linear
(svc_lr), Support Vector Classifier Radial Basis Function
(svc_rbf), Support Vector Classifier Polynomial (svc_poly), Sup-
port Vector Classifier Sigmoid (svc_sig)38, Random Forest Clas-
sifier (rfc)39, Gradient Boosting Classifier (gbc)40, and Adaptive
Boosting Classifier (abc)41, K-nearest neighbor (knn)42.

Considering the 56 independent physicochemical attributes
were unable to robustly distinguish the AMP, we used the deep
learning technology, which comprises three primary components
in the model, including an embedding layer, an encoder layer, and
a task layer43,44.

Initially, the embedding layer processes the input sequence and
converts every amino acid in a peptide chain into a compact and
dense vector that represents the particular amino acid. The pri-
mary concept of embedding is to map each type of amino acids to
a distinct randomly initialized vector, which is fine-tuned based on
the specific task using back propagation during model training.
Each amino acid in a sequence is transformed into a dense and
low-dimensional embedding vector, ensuring that every sequence
in a batch is converted into a matrix composed of these vectors.
Through the embedding layer, the entire sequence is uniquely
represented by a matrix.

The encoder layer serves as the model’s foundation, capturing
the contextual information for each residue embedding vector at
various positions, allowing the residue embeddings to possess
distinct feature vectors based on the context, and learning the
distinguishing characteristics of AMPs. At its core, the encoder
layer is made up of transformers’ encoders. Each encoder block
consists of a multi-head attention mechanism, a feedforward
network, and a pair of skip connections. The multi-head attention
is a combination of several self-attention mechanisms, which is
designed to learn the contextual representation of the sequence.
The self-attention and multi-head attention mechanism can be
mathematically described as Eqs. (1)‒(3):
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X is the output matrix of the embedding layer. Three different
weight matrices (WQ, WK, WV) linearly transform this embedding
matrix X to generate the query matrix Q, the key matrix K, and the
value matrix V. The Query matrix represents the current position,
the key matrix represents other positions, and the value matrix
holds the information that will be weighted based on the attention
scores. Only the WQ was shown above. In the context of this
model, the term ‘edr’ refers to the embedding dimension of the
residue, which is the dimensionality of the embedded represen-
tation. On the other hand, ‘edv’ corresponds to the embedding
dimension of the value, which defines the size of the query, key,
and value vectors. ’L’ signifies the maximum length of the residue
sequence, effectively denoting the length of an input sequence.
The variable ‘i’ is indicative of the count of attention heads,
ranging from the first up to the ‘h’th.

Similarly, the attention weights will be computed several times
with a different set of weight matrices each time. These weight
matrices are Wi

Q, Wi
K and Wi

V, which are used to generate the
query, key and value matrices for the i-th head respectively. Here,
h denotes the number of heads.

Subsequently, the output of all the heads will be stitched
together and mapped to the same space as the encoder input using
a linear transformation using the matrix WO. This step is crucial
because it ensures that the output of the attention mechanism can
be directly used as the input of the next layer.

The task layer is made up of fully connected neural networks
and nonlinear activation functions, transferring the representations
of AMP to a probabilistic distribution of classes to make the
prediction. In this layer’s workflow, the input data are composed
of two parts: the feature set of 56 descriptors and output of the
encoder layer. These first undergo a linear transformation, fol-
lowed by a ReLU activation function to introduce non-linearity.
Next, the outputs will be passed through another linear trans-
formation and another ReLU activation. Lastly, a softmax function
is applied to convert the final outputs into a probability distribu-
tion, which serves as the final result.
2.3. Evaluation metrics of multiple models

To evaluate the performance of all models, we used the following
metrics: accuracy (ACC), precision (Prec), matthews correlation

https://www.ncbi.nlm.nih.gov/gds
https://plants.ensembl.org/index.html
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coefficient (MCC), and area under the Receiver Operating Char-
acteristic curve (AUC-ROC) value as in Eqs. (4)e(6):

ACCZ
TPþTN

TPþTNþ FPþ FN
ð4Þ

MCCZ
TP�TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FNÞðTNþ FPÞp ð5Þ

PrecZ
TP

TPþ FP
ð6Þ

True positives (TP) represent the number of AMPs correctly
predicted as AMPs; false positives (FP) are the number of non-
AMPs incorrectly predicted as AMPs; true negatives (TN) are the
number of non-AMPs correctly predicted as non-AMPs; and false
negatives (FN) are the number of AMPs incorrectly predicted as
non-AMPs.

Accuracy (ACC) measures the overall correctness of the
model across all samples, reflecting its comprehensive perfor-
mance. Precision (Prec) indicates the success rate of predicting
positive samples accurately. The Matthews correlation coeffi-
cient (MCC) quantifies the relationship between observed and
predicted binary classifications. The AUC-ROC value represents
the area under the ROC curve enclosed by the coordinate axes.
An AUC value closer to 1.0 signifies a more reliable model,
whereas a value of 0.5 indicates the lowest reliability and a lack
of practical usefulness.
2.4. Peptide abundance calculations in probiotics

RNA-seq data were collected and analysed as previously
described45. Briefly, sequencing reads were aligned to reference
genomes and transcriptomes by TopHat (https://ccb.jhu.edu/
software/tophat/index.shtml). ORFs were predicted by ORF
Finder (https://www.ncbi.nlm.nih.gov/orffinder/), and protein
abundance was calculated by their corresponding RNA level. The
proteome was randomly interrupted into small fragments, and the
abundance of peptides was determined based on protein
abundance.
2.5. Strains, plasmids and gene synthesis

All strains and plasmids used in this study are listed in Supporting
Information Table S1. The Escherichia coli strain S1030 was
purchased from Addgene (Cat. No. #105063). The E. coli strains
DH5a and BL21(DE3) Chemically Competent Cell were pur-
chased from TransGen Biotech. Bacillus subtilis 168 was pur-
chased from Biofeng. Mutagenesis plasmid MP4 (Cat. No.
#69652), gIII expression vector pJC175e (Cat. No. #79219), were
purchased from Addgene. pBAD18-GFP and pT7-GFP were
purchased from Biofeng. M13 phage was purchased from
Guangzhou Zymostar Biotech (Cat. No. ZS1004). pTET-GFP was
provided from the Liu lab at the Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, Jiangnan
University, China.

The DNA of AMP candidates, SrtA, gIII-R- pSPO-RBS-gIII-F,
GFP1-10 and GFP-11 were synthesized from GUANGZHOU IGE
BIOTECHNOLOGY LTD after codon optimization for E. coli in
coding region.
2.6. Plasmid construction and application

The gIII-R-pSPO-RBS-gIII-F DNA was synthesized and inserted
into the pJC175e plasmid to replace the gIII gene. This plasmid
was used as an accessory plasmid in PANCE.

The AMP candidates listed in Supporting Information Table S2
were synthesized and inserted into the pBAD18-GFP or pT7-GFP
plasmid to replace the GFP gene. These plasmids were used for
AMP candidate expression in vivo and in vitro.

The GFP1-10 and GFP11 DNA were synthesized and inserted
into the pTET-GFP to replace the tetO-GFP DNA. The GFP1-10
plasmid was transferred into E. coli strain BL21 (DE3), and the
GFP11 plasmid was transferred into B. subtilis 168.

All these plasmids were constructed from IGE
BIOTECHNOLOGY LTD. All primers used in this study are
listed in Supporting Information Table S3.
2.7. Preparation of SrtA primary M13 phage for PANCE

The DNA fragment of SrtA was amplified by Hieff Canace� Gold
High Fidelity DNA Polymerase (Yeasen Biotechnology Shanghai
Co., Ltd., Cat. No. 10148ES60) using the synthesized gene as a
template. The M13 genome skelecton without gIII was amplified
by DNA Polymerase using the M13 phage as a template. The
DNA fragments of SrtA was respectively cloned into the M13
genome skelecton without gIII using Hieff Clone� Plus Multi One
Step Cloning Kit (Yeasen Biotechnology Shanghai Co. Ltd., Cat.
No. 10912ES10). Cloning product was transformed into the E.
coli strain S1030 containing the pJC175e plasmid. Transformed
S1030-pJC175e was cultured at 37 �C overnight for M13 phage
replication, package and release. After transient centrifugation,
phage-containing supernatant was diluted and infected into fresh
S1030-pJC175e strain to determinate the titer using the bilayer
agarose plate method. Monoclonal phage was picked into fresh
S1030-pJC175e strain for amplification. Bacterial PCR was
applied to identify the correctness of fragment insertion, and the
PCR product was further verified by Sanger sequencing. Primers
are listed in Table S3.
2.8. Processes of PANCE for SrtA evolution

PANCE was performed according to previous report46, using the
MP4 as mutagenesis plasmid. Briefly, every round of PANCE was
divided into three steps. Firstly, primary M13 phage of SrtA was
added into 100 mL of fresh E. coli strain S1030 containing the
accessory plasmid at a final concentration of 10,000e100,000CFU/
mL. After an incubation of 20min at 37 �C, themedium supernatant
was removed by instantaneous centrifugation. Next, 10 mL of fresh
Lysogeny broth (LB) medium (10 g/L tryptone, 5 g/L yeast extract,
and 10 g/L sodium chloride, pH 7.0) with 100 mg/L ampicillin and
10 mmol/L L-arabinose was used to resuspend the bacterial pre-
cipitate. After incubation for 6 h at 37 �C, the medium supernatant
was collected by instantaneous centrifugation. Phage titer was
detected every 30e60 min until the phage titer reached
1,000,000 CFU/mL. If the phage titer remained lower than
1,000,000 CFU/mL, 100 mL of S1030-pJC175e was added to
amplify the M13 phage to a titer greater than 1,000,000 CFU/mL.
Finally, progeny M13 phage was obtained by collecting the super-
natant of medium which was centrifuged at 10,000�g for 1 min.
The progeny M13 phage was used as primary phage in the next
round of PANCE.

https://ccb.jhu.edu/software/tophat/index.shtml
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2.9. Antimicrobial activity assay of AMP candidates

To assess whether the AMP candidates listed in Table S2 have
antimicrobial activity, we constructed their codon-optimized
DNA sequence onto the pBAD18-GFP vector, and trans-
formed them into E. coli strain DH5a. A single colony strain
was inoculated with 100 mg/L ampicillin and divided into six
parts equally, which containing 0.01e100 mmol/L L-arabinose,
respectively. After being cultured at 37 �C with a rotation speed
of 200 rpm until that the optical density at 600 nm (OD600)
value of one of them exceeded 1.2, the OD600 values of all the
groups were detected and the value ratios of with to without L-
arabinose were calculated. The survival curve was plotted by
using GraphPad Prism 9 (Nonlinear regression) with a
doseeresponse (inhibition) equation, and the minimum inhibi-
tory concentration reached by 50% (MIC50) of L-arabinose was
calculated.

For the purified peptide candidates and Nisin A (Yuanye
Biotech), the indicator strains were inoculated at a concentration
of approximately 500,000 CFU/mL in an appropriate medium
with 0.1e1000 mmol/L peptide candidates. After being incubated
at an appropriate temperature and rotate speed until that the OD600

value for the control group (without any peptide candidate)
exceeded 0.8, the OD600 values of all the groups were detected and
the value ratios of the groups with to without peptide candidate or
Nisin A were calculated. The survival curve was plotted by using
GraphPad Prism 9 (Nonlinear regression) with a doseeresponse
(inhibition) equation, and the MIC50 value of peptide candidate
was calculated.

2.10. Random 150N ORF library construction for high-
throughput screening of AMPs

Two random PCRs were used to generate a random DNA library
of 150 bp in the plasmid pBAD18-GFP. The first round of random
PCR contains 75 random bases downstream of the start codon
ATG. The second round of random PCR contained 75 random
bases downstream of the first round of 75 random bases, with a
spacer of 20 bps in the middle for primer binding. The random
mutant plasmid library was amplified using Hieff Canace� Gold
High Fidelity DNA Polymerase (Yeasen Biotechnology Shanghai
Co., Ltd., Cat. No. 10148ES60) using the pBAD18-GFP as a
template. The amplified PCR product was digested by DpnI and
recovered using MolPure Gel Extraction Kit (Yeasen Biotech-
nology Shanghai Co. Ltd., Cat. No. 19101ES70), and then trans-
formed into E. coli strain DH5a by electro-conversion to repair
DNA. Total plasmid library was extracted using MolPure�

Plasmid Mini Kit (Yeasen Biotechnology Shanghai Co., Ltd.,
Cat. No. 19001ES70) and was used as the template in the next
round of random PCR. The next round PCR product underwent
the same treatment and recovery processes. Finally, the total
plasmids were extracted and used as the random mutant plasmid
library.

2.11. Next generation sequencing for screening AMPs

The random mutant plasmid library was transformed into E. coli
strain DH5a. The strain pools were cultured with or without
10 mmol/L L-arabinose at 37 �C with a rotate speed of 200 rpm
until the OD600 value reached 0.6. The plasmid pool was then
extracted and amplified using primers containing Illumina uni-
versal sequence and index (Yeasen Biotechnology Shanghai Co.,
Ltd., Cat. No. 13519ES04). The PCR product was recovered and
sequenced by Illumina NovaSeq 6000 platform with the PE150
model.

After sequencing, the adaptors at both end of the sequencing
reads were trimmed using Trimmomatic (http://www.usadellab.
org/cms/?pageZtrimmomatic), followed by which Reads 1 and
Reads 2 were assembled into completed sequences, and then
translated from the start codon ATG to obtain the amino acid
sequences. The abundance of these peptides was calculated
and the ratio of peptide abundance with to without 10 mmol/L
L-arabinose was calculated. Two thresholds were used to distin-
guish AMP candidates: a relax threshold (Foldchange value
(Ara þ/�) < 0.5, P value (Ara þ/�) < 0.05) and a strict
threshold (Foldchange value (Ara þ/�) < 0.5, P value (Ara
þ/�) < 0.01).
2.12. Cell-free AMP synthesis (CFAS) system

The cell lysis of E. coli strain was performed according to pre-
vious reports47,48. After culturing the E. coli strain BL21(DE3) in
2 � YT medium (16 g/L tryptone, 10 g/L yeast extract, and 5 g/L
sodium chloride, pH 7.0) to an OD600 value of 3, the culture was
centrifuged at 5000�g and 4 �C for 15 min and washed three
times with pre-chilled S30 buffer (10 mmol/L triacetate pH 8.2,
14 mmol/L magnesium acetate, 60 mmol/L potassium acetate,
2 mmol/L dithiothreitol (DTT)). Added 0.8 mL of S30 buffer per
gram of wet cell mass and sonicated the cells under ice bath
conditions. The sonication power is 20 W, and it stops for 20 s
after working for 10 s until the suspension became clear. Added
DTT at a final concentration of 3 mmol/L, and centrifuged the
lysate at 12,000�g and 4 �C for 10 min.

A 50 mL CFAS reaction was assembled by mixing the following
components: 50 mmol/L HEPES, pH 7.2; 1.2 mmol/L ATP,
0.85 mmol/L UTP, GTP and CTP; 34 mg/mL folinic acid;
170 mg/mL E. coli tRNA mixture; 5 mg/mL T7 RNA Polymerase;
15mg/mLPCRproduct; 2mmol/L for each of the 20 standard amino
acids; 0.33 mmol/L nicotinamide adenine dinucleotide (NAD);
0.27 mmol/L coenzyme-A (CoA); 1 mmol/L putrescine; 4 mmol/L
sodium oxalate; 1.5 mmol/L spermidine; 130 mmol/L potassium
glutamate; 10 mmol/L ammonium glutamate; 12 mmol/L magne-
sium glutamate; 33 mmol/L phosphoenolpyruvate (PEP), and 30%
v/v of cell extract. The CFAS reaction was incubated overnight at
37 �C, which was ready for SDS-PAGE analysis and peptide
purification.
2.13. AMPs purification form CFPS reaction

The reaction system was mixed with 2 volumes of ethanol and
precipitated overnight at �20 �C. After centrifuged at 12,000�g
and 4 �C, the pellet was dissolved by 50 mmol/L phosphate buffer
(pH 6.0), and filtered with a 0.22 mm filter membrane. Next,
Sephadex G75 was equilibrated with phosphate buffer, and the
dissolved pellet was added at a flow rate of 0.5 mL/min, with the
effluent being collected at different stages. SP sepharose HP was
equilibrated with phosphate buffer, and the protein sample was
loaded. Unbound proteins were subsequently washed with 3 vol-
umes of phosphate buffer, followed by a gradient elute with 1 mol/L
NaCl-phosphate buffer. SP sepharose HPwas eluted at a flow rate of
1 mL/min, and the eluate was collected. The purity and yield of
AMP were determined by SDS-PAGE and the BCA Protein Assay
Kit (Solabio) according to the manufacturer’s instructions.

http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
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2.14. ARTP for mutant generation

The Lactobacillus plantarum strain 123 (Yunying Biotech) was
cultured in MRS medium (10 g/L peptone, 10 g/L beef paste, 5 g/L
yeast paste, 2 g/L diammonium hydrogen citrate, 20 g/L glucose,
0.1% (v/v) Tween-80, 5 g/L sodium acetate, 2 g/L dipotassium
hydrogen phosphate (K2HPO4$3H2O), 0.58 g/L magnesium sulfate
(MgSO4$7H2O), 0.25 g/L manganese sulfate (MnSO4$H2O), pH
6.2e6.6) until the OD600 value reached 0.6.

1 mL of the strain was centrifuged at 7000�g for 1 min, and
then the medium supernatant was removed. The strain pellet was
washed twice with 10 mL of PBS buffer (8 g/L sodium chloride,
0.2 g/L potassium chloride, 1.42 g/L disodium hydrogen phos-
phate, and 0.24 g/L potassium dihydrogen phosphate, pH 7.4), and
subsequently suspended in 10 mL of PBS buffer. Afterwards,
10 mL of the suspension was coated on the iron piece of ARTP
(Tianmu Biotechnology Co., Ltd.). A total of 3 times ARTP
mutagenesis with the condition of 120 W, 15 SLM, 2 mm and
1 min was executed, followed by the piece was washed in 1 mL of
MRS medium. The strain was allowed to stand for 2 h at room
temperature for the preparation of microdroplets.
2.15. Preparation of microfluid chips for fluorescence-activated
droplet sorting (FADS)

Microfluidic chips were built using bypoly(dimethylsiloxane)
(PDMS, Dow Corning Corp.) according to standard soft-
lithography methods. UV exposure was used to prepare SU8-
2015 negative photoresist (MicroChem Corp.) mold a silicon
wafer. A 10% (w/w) final concentration of curing agent was added
to the PDMS and poured onto the mold. After degassing under
vacuum condition, the mold cross-linked at 65 �C overnight.
PDMS was then spalled off and punched with a 0.75 mm diameter
biopsy punch, and then bound to glass microscope slide using
oxygen plasma system. Finally, hydrophobic surface coating was
created by injecting HFE7100 fluorinated oil (3 mol/L) with 1%
(w/w) 1H,1H,2H,2H-perfluorodecyltrichlorosilane (97%; ABCR)
in the 25 mm microfluidic channels.

Electrode hole of the sorting chips were filled with 51In/
32.5Bi/16.5Sn low-temperature solder (Indium Corp.) and incu-
bated at 110 �C for 30 min. The short pieces of electrical wire
were inserted to the hole before the metal solidifies.
2.16. Preparation of microfluid devices for FADS

The optical setup consisted of a Compound Inverted Microscope
System (Olympus) mounted on a dampening platform. A 488 nm
laser was focused through the objective lens across the micro-
fluidic chip. Emitted light from fluorescing droplets was captured
and channelled back along the path of the lasers by the objective,
and then separated from the laser beam and split by photo-
multiplier tube, which captured the light through a 510 nm
bandpass filter (510/20e25; Semrock Inc.). The signal output was
analyzed using a PCI-7831R Multifunction Intelligent Data
Acquisition (DAQ) card (National Instruments Corporation)
executing a program written in LabView 8.2 (FPGA module,
National Instruments Corporation), which can identify droplets by
peaks in fluorescence. A Phantom v4.2 high speed digital camera
(Vision Research) was loaded on the microscope to capture light
images during droplet manipulation. Liquids were injected into
the chips using standard-pressure syringe pumps (Harvard
Apparatus Inc.). We used aqueous droplets in HFE7500 fluori-
nated oil (3 mol/L) with 4% (w/w) FluoSurf surfactant (Techu
Scientific).

A dropmaker chip was applied to generate 20 pL droplets at
4000 Hz by flow-focusing of the aqueous stream (5 mL/min) with
two streams of HFE7500 fluorinated oil (3 mol/L) (10 mL/min)
containing 4% (w/w) FluoSurf surfactant. The generated droplets
flowed off-chip through PTEF tubing to a collector.

An injection chip was applied to inject biosensor (mix of
GFP10-E. coli strain BL21 (DE3) and GFP11-B. subtilis strain
168) into droplets. Droplets were reloaded (1 mL/min) and spaced-
out at a flow-focusing junction with HFE7500 fluorinated oil
(3 mol/L) (1 mL/min). The biosensor was rejected (0.5 mL/min)
and droplets at T-junction, at which a continuous voltage of 500 V
was loaded. The injected droplets flowed off-chip through PTEF
tubing to a collector.

The module of fluorescence-activated droplet sorting (FADS) in
which droplets were reloaded (0.2 mL/min) and spaced-out at a
flow-focusing junction with HFE7500 fluorinated oil (3 mol/L)
(1 mL/min). The droplets were detected and analysed by the optical
setup and fluorescent droplets were sorted at 500 Hz by applying an
AC field pulse (30 kHz; 700e1000 V; 0.5 ms). The sorted droplets
were collected in a 1.5 mL microcentrifuge tube. Under analysis
mode operation, reloading module in which droplets were reloaded
(0.2 mL/min) and spaced-out at a flow-focusing junction with
HFE7500 fluorinated oil (3 mol/L) (1 mL/min). The droplets were
detected and analysed by the optical setup at w1000 Hz.

2.17. Statistical analysis

Statistical analyses were performed using the two-tailed Student’s
t-test, one-way analysis of variance (ANOVA), or ManneWhitney
nonparametric U-test with GraphPad Prism 9.0. An asterisk (*)
indicates that a P value less than 0.01 was considered statistically
significant. All experiments were performed with three replicates,
and the error bars in the figure legends represent means � SD
values.

3. Results

3.1. Establishment of COMDEL model for AMP identification

As depicted in Fig. 1, we have developed an innovative AI-based
approach using the methodology of Comparing and Optimizing
Multiple DEep Learning (COMDEL) algorithms for the dual
purposes of identifying AMPs and screening probiotics. To ensure
a comprehensive AMP dataset, we amassed a collection of 10423
AMPs sourced from various species and artificial AMP databases
(Fig. 2A)15,17,32,33. Subsequently, 5965 representative AMPs were
retained by filtering out homologous and similar sequences, to
create a robust AMP dataset (Fig. 2B). Simultaneously, to mitigate
data bias, we compiled a non-AMP dataset comprising 5910
peptides that were identified for lacking antibacterial function
annotations in the Uniport database. These non-AMPs were cho-
sen based on their similarity in length distribution and amino acid
composition to the AMPs (Fig. 2B). For the purpose of model
training and validation, these data were randomly divided into 25
equal subsets; 20 of these were utilized for training, while the
remaining 5 subsets served as a test dataset (Supporting
Information Fig. S1A). Encouragingly, the peptide length distri-
butions in both training and test datasets were similar, confirming



Figure 2 Construction of the COMDEL model. (A) The venn diagram illustrates the AMP data collected from three AMP databases including

CAMPR433, ADAM17 and APD315. (B) The pie chart displays the length distribution of the collected AMP and non-AMP data. (C) The

COMDEL model consists of four main parts. The first is the ‘Embedding Module’, where each part of a protein sequence is turned into multiple

data points based on its context. These data points are then standardized. Next, the ‘Encoding Module’ uses a special technique to understand

complex sequence patterns, ensuring maximal utilization of every sequence portion. The third part, ‘Physicochemical Property Extraction’, pulls

out 56 unique characteristics from the sequences, and these characteristics are processed using 13 different machine learning models. After these

processes, their outcomes are merged with those the Encoding Module. Lastly, the ‘Task-Specific Module’ uses a group of neural networks to

refine this information, turning it into probabilities for different categories. (D) AMP prediction accuracy comparison of the COMDEL model

across 13 NNAs. (E) The AMP prediction performance of the COMDEL model in training and test datasets.
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a reasonable distribution in our methodology (Fig. S1B). The ar-
chitecture of COMDEL, as detailed in Fig. 2C, comprises three
main modules: the embedding layer, the encoder layer, and the
task layer. Within the embedding module, each residue in an AMP
sequence is represented by multiple embedding vectors. Through
dimensionality reduction techniques and specifically correlation
analysis, 48 of 56 independent peptide features with a correlation
lower than 0.9 were narrowed down for effectively distinguishing
between AMPs and non-AMPs (Supporting Information Fig. S2).
Following the embedding layer, the encoder module employs a
multi-head attention mechanism to adeptly capture the sequential
nature of AMP data. To conclude the process, the task module
utilizes various neural networks to translate the AMP represen-
tation into a probability distribution corresponding to its classifi-
cation, ensuring high accuracy in AMP identification.

To account for potential biases among these 56 physico-
chemical features, we employed 13 NNAs as an initial screening
step. This approach was designed to assess the effectiveness of
these features in classifying AMPs. Concurrently, we fine-tuned
the hyperparameters of natural language processing (NLP) models
using independent datasets, and noted that all models converged
rapidly during training. Ultimately, the Classification and
Regression Tree (CART) method was selected to further improve
the accuracy of our COMDEL model for its best performance in
AMP prediction (Fig. 2D). In addition, hemolysis, a critical factor
to consider due to its potential harm49, was comprehensively
incorporated into our COMDEL model to ensure its safety in
AMP mining (Supporting Information Fig. S3).

Quantitatively, we evaluated various algorithm combinations
using metrics such as Precision, Recall, and the Area Under the
Precision-Recall Curve (AUPRC). Remarkably, in both the
training and test datasets, the precision of COMDEL rose to
95.7% and 92.4%, respectively, while its accuracy improved to
96.9% and 94.1% (Fig. 2E).

3.2. Performance comparison of COMDEL with other AMP
identification models

To evaluate the performance of our COMDEL model, we con-
ducted a comparative analysis with five other state-of-the-art AMP
identification models based on machine learning approaches,
including a deep learning model like the natural language pro-
cessing neural network models (NLPNNM)16, and traditional
machine learning models, such as AMPEP21, AMP Scanner
v217,22, AMPIR24, and Deep-ABPpred19, using a unified test
dataset in our collected data. The Area Under the Receiver
Operating Characteristics (AUROC) curve revealed that
COMDEL outperformed the others in terms of both accuracy and
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precision. Specifically, COMDEL boasted a higher true-positive
rate and a lower false-positive rate, and consequently higher
overall accuracy and precision (Fig. 3A and B). These results
convincingly demonstrated that the COMDEL model is a robustly
effective and reliable tool for distinguishing AMPs from sequence
data.

To delve deeper into the performance of COMDEL against
competing models, we categorized the testing dataset into five
categories based on peptide length. Among the three advanced
AMP prediction models previously described, we observed that
accuracy obviously improved with increasing peptide length,
particularly in the AMPEP model (Fig. 3C). This trend might be
attributed to the fact that longer peptides tend to facilitate better
feature extraction, thereby enhancing model performance.
Conversely, shorter peptides might pose a challenge in this
aspect, as their features may not be effectively extracted.
Intriguingly, this length bias seems to be greatly alleviated in our
COMDEL model, indicating its superior adaptability (Fig. 3C).
Further supporting this, comparison results also revealed that
COMDEL consistently surpassed other methods in predicting
AMPs of various lengths in the test dataset, particularly short
AMPs (Fig. 3C).

3.3. Optimizing COMDEL model using high-throughput AMP
screening technology

As depicted in Fig. 3C, although the COMDEL model could
lessen the bias caused by peptide length, it is noteworthy that
predictions for peptides shorter than 50 amino acids were still less
Figure 3 The performance comparison of COMDEL with other state-of

of COMDEL versus other AMP prediction methods on a unified test data

accuracy comparison of COMDEL versus other AMP prediction metho

COMDEL versus other AMP prediction methods across peptides of varyi
accurate compared to those of longer peptides. This limitation was
even more pronounced in the other models.

To further refine the COMDEL model, we implemented a
high-throughput AMP-screening strategy aimed at effectively
filtering AMPs from random peptide sequences (Fig. 4A). In
this process, a plasmid pool containing 150 bp of random DNA
sequences (referred to as 150N) was constructed downstream of
the start codon ATG and the ribosome binding site (RBS). To
mitigate the effects of unintended gene expression on host cell
growth, we stringently regulated the expression of random
peptide gene by using the arabinose operon. After transforming
this plasmid pool into the E. coli strain DH5a and cultivating it
to the logarithmic phase with or without the induction of
arabinose, we harvested the plasmids and amplified the 150N
sequences using universal primer pairs at its both ends
(Fig. 4A).

Through next-generation sequencing (NGS), we discovered 415
up-regulated and 52 down-regulated peptide sequences in the relaxed
model (P value < 0.05), along with 91 up-regulated and 40 down-
regulated peptide sequences in the strict model (P value < 0.01)
(Fig. 4B, Supporting Information Table S4). We particularly focused
on the peptides that exhibited reduced expression, as these were hy-
pothesized to potentially possess bacteriostatic properties. To confirm
this hypothesis, we selected 10 down-regulated peptides that were
also predicted as AMPs by the COMDEL model, for further experi-
mental verification using antibacterial assays. The results confirmed
that all the 10 down-regulated peptides displayed bacteriostatic ac-
tivity (Fig. 4C, Table S2), thereby validating their potential utility as
effective AMPs.
-the-art AMP prediction methods. (A) The AUROC curve comparison

set. AUC represents the Area Under the Curve. (B) The precision and

ds on a unified test dataset. (C) The AUROC curve comparison of

ng lengths within the unified test dataset.
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To further enhance the AMP identification accuracy of the
COMDEL model, we integrated the high-throughput screening
results into the training process of model construction. As a result,
the overall accuracy and precision of COMDEL for total peptides
impressively reached an outstanding 94.8% and 92.9%, respec-
tively. Notably, this performance was even more remarkable for
peptides shorter than 50 amino acids, where these metrics
improved to 95.4% and 94.6% as a direct consequence of feature
parameter optimization (Fig. 4D and E). These outcomes indicate
that the performance of the COMDEL model can be substantially
boosted when augmented with the NGS data. To corroborate these
findings, we conducted antibacterial assays on 50 AMP candidates
predicted by the optimized COMDEL model. The assays
demonstrated that 44 of these peptides exhibited bacteriostatic
properties, achieving a high positive verification rate of 88%
(Fig. 4F, Supporting Information Fig. S4, Table S2).

In conclusion, we have successfully developed and optimized
the COMDEL model, establishing it as an efficient and precise
tool for AMP identification. This model exhibits considerable
potential for industrial applications.

3.4. AMP mining in edible crops using COMDEL

The safety of AMPs, a critical factor for their utilization in in-
dustrial applications, remains a significant concern6,50. While
hemolysis has been taken into consideration during constructing
the COMDEL model, enhancing the safety of discovered AMPs
remains a central focus of our ongoing research.

In an effort to maximize the safety of identified AMPs, we
mined AMP candidates from soybean (Glycine max) and corn
(Zea mays), two typical food crops, by using these four AMPs
prediction models. Through a joint analysis of multi-omics data, a
total of 7504 and 5257 peptides from Glycine max (88,424 pep-
tides in total) and Zea mays (72,539 peptides in total), respec-
tively, were identified as AMP candidates (Fig. 4G, Supporting
Information Table S5). Among these models employed,
NLPNNM, a potent model recently reported, yielded the highest
number of predicted AMPs from both crops. The AMPs number
identified by COMDEL was approximately half that of NLPNNM,
while the other two methods could only identify a few hundred
(Fig. 4G). This may be due to that COMDEL and NLPNNM are
deep learning models, which possess better generalization ability
than traditional machine learning methods. The NLPNNM model
is the best-performing AMP prediction model currently reported,
consistent to our analysis (Fig. 3B). COMDEL identified 881
(25.0%) and 205 (15.5%) unique putative AMPs in Glycine max
and Zea mays, respectively, compared to NLPNNM, which iden-
tified 3636 (59.1%) and 3329 (72.1%) unique putative AMPs, as
well as AMPIR (17.7% average) and AMPEP (43.2% average).
Intriguingly, nearly 80% of the AMP candidates predicted by
COMDEL were also recognized by NLPNNM, suggesting a high
degree of concordance between the two deep learning models.
Conversely, only 30% of the peptides predicted by NLPNNM
were present among the AMP candidates identified by
COMDEL. The majority of peptide candidates uniquely predicted
by NLPNNM were not corroborated by other methods, suggesting
a relatively high over-prediction rate in NLPNNM (Fig. 4G).
These findings collectively indicate that the COMDEL model
possesses a relatively stringent and accurate performance
compared to other state-of-the-art AMP prediction models.

In Glycine max and Zea mays, a total of 16 and 21 peptides,
respectively, were identified as AMP candidates across all these
models, highlighting a high possibility for developing into func-
tional AMPs (Fig. 4G, Table S5). It is noteworthy that there still
existed around 1000 unique peptides candidates in Glycine max
and Zea mays being exclusively identified as AMP candidates by
our COMDEL model (referred to as COMDEL_u) (Fig. 4H). To
empirically validate the true-positive rate of these unique candi-
dates, we expressed 10 COMDEL_u AMP candidates in E. coli
strain DH5a using the pBAD18 vector under the control of the
arabinose operon. Our experiments showed that 7 of the 10
COMDEL_u peptides exhibited significant bacteriostatic activity
against E. coli DH5a, underscoring that the COMDEL model has
a relatively high true-positive rate in identifying AMPs that are
overlooked by other models (Fig. 4H, Table S2).

Additionally, a total of 7908 AMP candidates in Glycine max
and Zea mays were identified by other models but not by our
COMDEL model (referred to as COMDEL_e) (Table S5). Of
these, 570 AMP candidates were concurrently predicted by at least
two other models (Fig. 4H). To assess the false-negative rate, we
expressed 10 COMDEL_e AMP candidates in E. coli strain
DH5a. Our results revealed that only one of these 10 COMDEL_e
peptides significantly inhibited the growth of E. coli DH5a,
implying that the COMDEL model exhibits a lower false-negative
rate compared to other advanced models (Fig. 4H, Table S2).

In summary, our findings demonstrate that the COMDEL
model is capable of identifying AMPs with both high accuracy
and extensive coverage.

3.5. Biosynthesis of broad-spectrum AMPs derived from edible
crops identified by COMDEL

As stated before, most current AMP products are derived from
chemical synthesis or natural extraction methods that are both
low-yield and expensive, limiting the development of large-scale
AMP production28. To explore more efficient avenues for AMP
synthesis, we initially used E. coli BL21 (DE3) and Pichia yeast
GS115, two typical host strains for protein synthesis, to express
COMDEL-identified AMPs derived from Glycine max and Zea
mays with codon optimization. Unfortunately, this approach led to
a significant reduction in the proliferation of these host strains
upon the induction of AMP expression (Supporting Information
Fig. S5A and S5B). Additionally, SDS-PAGE results corrobo-
rated this challenge, indicating the difficulty for these host strains
to efficiently synthesize AMPs in vivo, probably due to their
inherent antimicrobial properties (Fig. S5C and S5D).

To mitigate the adverse effects of AMPs on bacterial growth,
we split AMPs into N-terminus (AMP-N) and C-terminus
(AMP-C) segments, and then ligated them using the peptide
ligase Sortase A (SrtA) that is widely used in peptide and protein
synthesis in vitro51. Following this approach, we expressed the
AMP-C, AMP-N and SrtA in the E. coli strain BL21 (DE3), and
observed that the growth of E. coli harbouring all three compo-
nents was only slightly inhibited compared to strains harbouring
each component independently. This observation suggests that
complete AMP may be successfully ligated by SrtA to generate
antibacterial activity (Supporting Information Fig. S6). Never-
theless, it was evident that the E. coli growth inhibition through
this process was about threefold weaker than that by expressing
intact AMPs (Fig. S6). This comparatively reduced inhibition
might be attributed to low ligation efficiency of SrtA, stemming
from its sequence preference.

To enhance the ligation activity of SrtA for AMP synthesis,
we employed the phage-assisted non-continuous evolution



Figure 4 Optimization and application of the COMDEL model in AMP mining. (A) Schematic diagram of the high-throughput AMP screening

method. A vector pool that contains 150N DNA sequences were controlled by the arabinose operon. The presence of bacteriostatic activity in

encoded peptides results in growth inhibition of the strain upon the addition of L-arabinose. The 150N DNA is then amplified using universal

primers and sequenced on the Illumina NovaSeq 6000 platform. (B) The volcano plot displays the difference in peptide expression under the

conditions with and without L-arabinose by analysing sequencing data. The labels “up-relax” and “up-strict” refer to peptides with an expression

increase (fold change >2) under relax (P value < 0.05) and strict (P value < 0.01) conditions, while “down-relax” and “down-strict” refer to

peptides with reduced expression (fold change <0.5) under relax (P value < 0.05) and strict (P value < 0.01) conditions. (C) The effect of 10

AMP candidates screened by high-throughput method on the growth of E. coli DH5a. (D and E) The AUROC curve comparison of the COMDEL

models before and after optimized in total peptides (D) and the peptides shorter than 50 amino acids (E) using the unified test dataset. (F) The

effect of 50 AMP candidates predicted by COMDEL from the two edible crops on the growth of E. coli DH5a. (G) The venn diagram displays the
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(PANCE)46, a cutting-edge method for directed evolution, to
screen for potent SrtA mutants. This was achieved by strategically
coupling SrtA’s ligation activity with the abundance of pIII, a
protein essential for the infectivity of M13 bacteriophages
(Fig. 5A). Drawing on a recent publication52, the accessory
plasmid (AP) was designed to feature a split pIII protein with both
N- and C-termini, which need to be ligated into a full-length pIII
by SrtA. We then replaced the native gIII gene in the M13
bacteriophage genome (named as SP) with the SrtA gene,
rendering it incapable of independently infecting the host E. coli
strain S1030. In parallel, a mutagenesis plasmid (MP) expressing
mutagenic genes was employed to enable continuous mutation of
SP containing the SrtA gene. Theoretically, an increase in the
activity of the evolved SrtA mutants was expected to lead to the
production of more intact pIII proteins and, consequently, a higher
yield of infectious bacteriophages (Supporting Infromation
Fig. S7).

As the evolutionary rounds progressed, the titer of bacterio-
phages experienced a notable increase, indicating an enhanced
activity of SrtA mutants (Fig. 5B). Through Sanger sequencing,
we successfully isolated an optimized SrtA mutant (SrtA*), har-
bouring the S49G and M102I mutations (Fig. 5C). Utilizing
AlphaFold2

9

, we compared the tertiary structure of SrtA* with that
of the wild type (WT), revealing that these two mutations spe-
cifically altered the size of the active centre pocket. This structural
modification is hypothesized to influence both the activity and
substrate preference of SrtA (Fig. 5D). A subsequent evaluation of
split AMPs ligated by SrtA* and WT in vivo showed that the
growth rate of E. coli harbouring both SrtA* and split AMPs was
about half that of E. coli with the wildtype SrtA and split AMPs,
while little difference in growth was observed when either SrtA or
SrtA* was expressed individually (Fig. 5E). This strongly suggests
that SrtA* is significantly more effective than the wild type in
ligating intact AMPs. These findings open up a promising
approach for more efficient AMP synthesis both in vivo and
in vitro. However, it’s crucial to acknowledge that the requirement
to split AMPs into two components imposes intrinsic limitations,
leading to lower yields of the synthesized AMPs (Supporting
Information Fig. S8).

Recently, cell-free protein synthesis systems have gained
widespread popularity for protein production, largely due to their
high efficiency and minimal cytotoxicity issues47. Given that the
synthesis of broad-spectrum AMPs in vivo brings severe stresses
on cell growth, we utilized a cell-free AMPs synthesis (CFAS)
system for the single-step synthesis of COMDEL-identified
AMPs. Results from SDS-PAGE confirmed that AMPs could be
effectively synthesized in the CFAS system (Fig. 5F). Following
purification through gel filtration and ion-exchange chromatog-
raphy, their yields were found to range from approximately 0.5 to
2.1 g/L (Fig. 5F), presenting a promising avenue for large-scale
AMP production within hours.

To evaluate the broad-spectrum efficacy of these COMDEL-
identified AMPs purified from the CFAS system, we determined
AMP candidates predicted by the optimized COMDEL model and other m

were identified by these four models in Glycine max and Zea mays, resp
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significantly different.
their effects against a panel of seven common bacteria and fungi.
Our results revealed that, in comparison to nisin, the AMPs
identified by our COMDEL model obviously exhibited more
expansive antibacterial activities against these microorganisms
expected for A. oryzae and C. glutamicum (Supporting
Information Fig. S9). This underscores the great potential of
these COMDEL-identified AMPs in industrial application.

3.6. Screening edible probiotics for high production of AMPs by
COMDEL and FADS

Edible probiotics, notably celebrated for their safety and health
benefits, have diverse applications in both food and medicine,
particularly for the high production of AMPs53-55. Take this trait
into account, we employed COMDEL to screen edible probiotics
with exceptional potential for AMP production (Fig. 1B). We
compiled the genomes, transcriptomes, and proteomes of 35
edible probiotics allowed to be used in food processing. Using a
weighting algorithm, we forecasted the proteome expression level
of each probiotic (Supporting Information Fig. S10). COMDEL
was then applied to assess the possibility of peptides derived
from these proteomes as potential AMPs. Based on the predicted
expression levels, we scored the overall potential AMP intensity
for each probiotic (Fig. S10). This led us to generate a compre-
hensive ranking according to total AMP intensity (Fig. 6A). To
validate our findings, we extracted fermentation products from the
top five ranked probiotics. The results corroborated that the
fermentation products of these probiotics exhibited bacteriostatic
properties, confirming the COMDEL prediction results. Notably,
Lactobacillus plantarum emerged as the candidate with the
highest AMP intensity among the top five ranked probiotics,
establishing it as an excellent candidate for AMP production
(Fig. 6B).

Although L. plantarum exhibited the most potent bacteriostatic
efficacy among these probiotics, its natural AMP abundance is
insufficient for extensive applications across various fields.
Recognizing this limitation, we turned to fluorescence-activated
droplet sorting (FADS)56da high-throughput screening method
for dominant strain selection by coupling with corresponding
sensorsdas a viable strategy for screening L. plantarum mutants
with elevated AMP yields. To establish a correlation between
bacteriostatic activity and fluorescence intensity, two strains
constitutively expressing split GFP were designed to be a fluo-
rescence sensor for AMP activity (Fig. 6C)57. The first strain is E.
coli BL21 (DE3), engineered to constitutively express the GFP1-
10 protein, and the second is B. subtilis 168, modified to consti-
tutively express the GFP11 protein. The underlying principle of
this design is straightforward: In case that the L. plantarum mu-
tants produce AMPs at higher levels, the E. coli and B. subtilis
cells can be lysed to release more GFP1-10 and GFP11, which
subsequently assemble into active GFP.

To generate a complex pool with mutant strains, we employed
atmospheric and room temperature plasma (ARTP)58, a safe and
ethods in two edible crops. A total of 7504 and 5257 AMP candidates

ectively, from datasets comprising 88,414 and 72,593 peptides. The

h model to the total number of peptides. (H) The effect of the AMP

. coli DH5a. COMDEL_u represents the AMP candidates uniquely

MP candidates identified by at least two models as opposed to the

th and without L-arabinose, an asterisk (*) denotes that the data are
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powerful mutagenesis technology, followed by employing the
FADS technology to screen for L. plantarum mutants with high
AMP production (Fig. 6C). We isolated 50 colonies and proceeded
to extract their fermentation byproducts, which were then utilized
to assess antibacterial activity. We found that numerous screened
colonies displayed stronger antibacterial effects against E. coli or
B. subtilis compared to the wild type. Notably, only three mutants
exhibited enhanced growth inhibition against both the two bac-
terial strains (Supporting Information Fig. S11). To confirm these
results, we analysed the bacteriostatic activity of the fermentation
supernatants from these three screened L. plantarum mutants
against the seven microorganisms. The data showed that, although
the bacteriostatic activity against A. oryzae was not significant,
these three mutants exhibited stronger and broader antibacterial
activities against the other six microorganisms than wildtype L.
plantarum. Moreover, the bacteriostatic activity of the three
screened L. plantarum mutants (M1, M2, and M3) was more than
twofold higher than that of the wild type in these six microor-
ganisms, except for Saccharomyces cerevisiae (Fig. 6D). These
findings highlight that FADS, combined with the split GFP sen-
sors, is an effective method for screening probiotics with high
antibacterial efficacy.

To decipher the gene mutations responsible for the enhanced
bacteriostatic activity, we carried out whole genome sequencing
(WGS) and drew a complete genome map of these three screened
Figure 5 Establishment of AMP biosynthesis approaches. (A) A bio

abundance of M13 essential protein pIII. In the selection phage (SP), the g

the gIII gene is segmented into two portions according to a recent publicati

Detection of the M13 phage titer change during the progression of evolutio

mutations in PANCE. (D) The structures comparison of SrtA and its muta

mutated amino acids are delineated and presented using ChimeraX. (E) Th

strain growth. When comparing to the OD600 value of the GFP vector, an

significantly different. (F) SDS-PAGE to exhibit three AMPs identified

synthesis system, and then purified by gel and ion exchange chromatogra
L. plantarum mutants (Fig. 6E). Through mutation analysis, we
found that the mutations occurred in these three strains exhibited
obvious specificity. There were six mutations in strain M1, seven
in strain M2, and five in strain M3. Interestingly, certain mutations
were shared between two of these strains, indicating their potential
roles in enhancing bacteriostatic activity.

3.7. Data availability

All data generated or analyzed during this study are included in
this published article.

4. Discussion

The mining and synthesis of natural broad-spectrum AMPs have
long been a focal point in the research field of antibiotic alter-
natives. Built upon the accumulated database of AMPs, recent
studies have leveraged machine learning and NNAs to create more
sophisticated AMP prediction models, offering promising ap-
proaches for AMP mining14-16. Yet, they often fall short in effi-
ciency, plagued by issues like inappropriate feature extraction,
inconsistent benchmark datasets, and a limited scope in algo-
rithms, especially when it comes to predicting short AMPs.

To overcome these limitations, we developed COMDEL, a
technology that integrates deep learning to achieve efficient and
sensor of SrtA activity linked to peptide ligation couples with the

III gene is replaced with the SrtA gene. In the accessory plasmid (AP),

on52, requiring ligation by SrtA to form the full-length pIII protein. (B)

nary rounds in SrtA PANCE. (C) Sanger sequencing to detect the SrtA

nts (SrtA*) predicted by AlphaFold2. Alterations in the side chains of

e peptide ligation efficacy of SrtA to AMP is validated by the effect on

asterisk (*) denotes that the data under corresponding conditions are

by COMDEL from the two edible crops generated by the cell-free

phy.



Figure 6 Screening edible probiotic for high AMP production. (A) The rank of the edible probiotics for potential AMP intensity predicted by

COMDEL. The possibility of edible probiotics to generated AMP was calculated and ranked by COMDEL according to the multi-omics data

including genome, transcriptome and proteome. (B) The antibacterial activity verification of probiotic fermentation product against E. coli BL21

(DE3) and B. subtilis 168. (C) Schematic diagram of screening the L. plantarum mutants for high AMP production by FADS. A biosensor of the

antibacterial activity coupled with the split GFP assembly is designed. (D) Antibacterial activity verification of the three screened L. plantarum

mutants against seven microorganisms. (E) The genome map of the three screened L. plantarum mutants was drew by using the whole genome

sequencing data. An asterisk (*) indicates that the data are significantly different when comparing the OD600 value of the condition with or without

the addition of the fermentation supernatant.
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accurate AMP identification. Three primary factors may
contribute to the superior performance of COMDEL in identifying
AMPs compared to other advanced models. Firstly, our model
benefits from access to an expansive and diverse dataset available
for training and test, thereby ensuring a robust and comprehensive
data foundation (Fig. 2A and B). Secondly, the feature extraction
and filtering processes employed in constructing the COMDEL
model are more sophisticated and extensive, allowing for better
generalization and predictive accuracy (Fig. S2). Thirdly, the NNA
integrated into our COMDEL model is particularly well-suited for
AMP prediction (Fig. 2C and D). Taken together, these superi-
orities strongly suggest that our COMDEL model holds excellent
potential for practical application in AMP discovery.
While COMDEL outperforms other state-of-the-art machine
learning-based methods in terms of its less pronounced bias to-
wards peptide length, it still struggles with lower accuracy for
peptides shorter than 50 amino acids. Recognizing this, we
considered high-throughput screening techniques as a potential
solution for batch screening of antimicrobial peptides. However,
effective methods in this area are still underdeveloped59,60. To
enhance our AMP database for optimizing COMDEL, we
compiled a peptide pool with sequences shorter than 50 amino
acids and screened for those with high bacteriostatic activity.
Finally, the optimized COMDEL model achieved an unprece-
dented accuracy rate of 94.8% for total peptides and 95.4% for
peptides shorter than 50 amino acids. These record-breaking



Figure 7 Web page preview of COMDEL. The COMDEL model is available at https://ai.tidetronbio.com:7782/ampPredict.html. It needs users

to provide the peptide sequence. The possibility value ranges from 0 (non_AMP) to 1 (AMP).
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performances underline COMDEL’s immense potential in
industrial-scale AMP prediction.

To ensure safety and feasibility, our application of COMDEL
was specifically focused on two edible crops: Glycine max and
Zea mays. Although the amount of data we tested was limited, in
combination with proteomic data, COMDEL boasts definitely
superior accuracy in AMP identification compared to other
existing methods. This insight led us to consider edible biomass as
a promising source for discovering safe AMPs. Moreover, we
applied COMDEL to screen edible probiotics known for their high
AMP expression levels. Of particular note was L. plantarum,
which stood out as the most prolific natural AMP producer among
35 edible probiotics. While previous studies have highlighted L.
plantarum’s antibacterial traits and its AMP production during
fermentation, the AMP quality and quantity are insufficient for
broad application in effectively suppressing other microorgan-
isms53. This might necessitate employing advanced directed
evolution technologies like high-throughput screening methods
based on flow cytometry and microdroplet, to screen for broad-
spectrum AMPs, probiotics, and their mutants60,61. In pursuit of
this goal, we engineered a split GFP sensor responsive to bacte-
riostatic activity. This innovative approach facilitated the
screening of high-performing L. plantarum mutants. Our efforts
culminated in identifying three L. plantarum mutants with
significantly enhanced antimicrobial capabilities, highlighting
their considerable potential in food processing applications.

Although COMDEL has exhibited robust performance on
AMP and probiotic mining, there are still some limitations in our
study. One significant limitation is that our model cannot predict
the effects of unnatural amino acid and protein modifications on
AMP activity, due to the fact that peptides containing these fea-
tures are more difficult in synthesizing. However, these are
prevalent in many natural AMPs and are frequently utilized in
AMP design6,61. Incorporating these features during model
development is possible in the future improvement of COMDEL.
Second, our high-throughput screening method produces a limited
array of AMPs, failing to encompass broad-spectrum consider-
ation. Adequate broad-spectrum AMP screening methods and data
are still urgently needed to train and optimize the AMP prediction
and design models. Our model has been specifically designed to
augment specific AMP data through high-throughput methods,
allowing for an automatic iterative process. Within the codebase,
it is capable of autonomously aggregating data from current
mainstream AMP databases, facilitating the self-iteration of the
model. Additionally, although we have endeavored to ensure the
safety of the screened AMPs in the construction and application of
COMDEL, implementing a more comprehensive and detailed
AMP safety evaluation method remains essential49. Lastly, in
terms of AMP synthesis, we have employed a cell-free system to
achieve large-scale synthesis in hours; however, the associated
costs remain prohibitively high. Therefore, developing a more
efficient and inexpensive synthesis system is urgently needed for
the industrial production and application of AMPs.

5. Conclusions

In summary, through utilizing deep learning and high-throughput
methodologies, we developed COMDEL, an advanced AMP
identifier outstanding for its exceptional accuracy, precision, and
minimal bias. Furthermore, we introduced two novel and efficient
methods for the synthesis of edible AMPs predicted by COMDEL:
enzymatic ligation and cell-free synthesis. These innovations pave
the way for the industrial-scale production of AMPs. Employing
COMDEL, we have successfully screened edible probiotics for
high AMP production potential and further enhanced their anti-
bacterial ability through directed evolution. Ultimately, in an
effort to broaden the accessibility of our research, we have created
a web interface to showcase our COMDEL model, available at
https://ai.tidetronbio.com:7782/ampPredict.html (Fig. 7). We hope
that our COMDEL model will serve as a valuable tool for re-
searchers aiming to classify and design AMPs with powerful
application values.

Acknowledgments

The authors are grateful toDr JinmingCui fromGuangzhou Institute
of Advanced Technology for guiding the PANCE. This work
was supported by a grant from the Hubei University of Science
and Technology Program (No. BK202417, China), Doctoral
Special Research Fund Launch Project of Jiamusi University
(JMSUBZ2021-12, China), and Youth Innovative Talent Cultivation
Support Plan of Jiamusi University (JMSUQP2022016, China).

https://ai.tidetronbio.com:7782/ampPredict.html
https://ai.tidetronbio.com:7782/ampPredict.html


Multiple strategies for effectively screening antimicrobial peptides and probiotics 3491
Author contributions

Yu Zhang: Investigation, Methodology, Software, Validation,
Visualization. Li-Hua Liu: Investigation, Methodology, Valida-
tion, Visualization. Bo Xu: Conceptualization, Data curation,
Project administration, Writing e original draft. Zhiqian Zhang:
Conceptualization, Funding acquisition, Project administration,
Supervision. Min Yang: Investigation, Methodology, Validation,
Visualization. Yiyang He: Formal analysis, Methodology, Project
administration, Software, Validation, Visualization. Jingjing Chen:
Visualization, Validation. Yang Zhang: Supervision, Validation.
Yucheng Hu: Validation, Visualization. Xipeng Chen: Validation.
Zitong Sun: Validation, Visualization. Qijun Ge: Methodology.
Song Wu: Validation. Wei Lei: Software. Kaizheng Li: Validation.
Hua Cui: Validation. Gangzhu Yang: Visualization. Xuemei Zhao:
Methodology. Man Wang: Validation. Jiaqi Xia: Data curation,
Formal analysis, Methodology, Software. Zhen Cao: Investigation,
Methodology, Supervision. Ao Jiang: Conceptualization, Data
curation, Formal analysis, Investigation, Methodology, Project
administration, Resources, Supervision, Writing e original draft,
Writing e review & editing. Yi-Rui Wu: Conceptualization,
Formal analysis, Project administration, Writing e original draft.

Conflicts of interest

The authors declare no conflicts of interest.

Appendix A. Supporting information

Supporting information to this article can be found online at
https://doi.org/10.1016/j.apsb.2024.05.003.

References

1. Brogden KA. Antimicrobial peptides: pore formers or metabolic in-

hibitors in bacteria?. Nat Rev Microbiol 2005;3:238e50.

2. Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application

informed by evolution. Science 2020;368:eaau5480.

3. Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial,

anti-inflammatory and antibiofilm activities. Int J Mol Sci 2021;22:

11401e20.

4. Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M,

Ioannidis A, et al. The value of antimicrobial peptides in the age of

resistance. Lancet Infect Dis 2020;20:e216e30.

5. Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed

in the design of antimicrobial peptides with enhanced proteolytic

stability. Biotechnol Adv 2022;59:107962.

6. Torres MDT, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide

design principles for antimicrobial applications. J Mol Biol 2019;431:

3547e67.

7. Lata S, Mishra NK, Raghava GP. AntiBP2: improved version of

antibacterial peptide prediction. BMC Bioinf 2010;11(Suppl 1):S19.

8. Xiao X, Wang P, Lin WZ, Jia JH, Chou KC. iAMP-2L: a two-level

multi-label classifier for identifying antimicrobial peptides and their

functional types. Anal Biochem 2013;436:168e77.

9. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O,

et al. Highly accurate protein structure prediction with AlphaFold.

Nature 2021;596:583e9.

10. Madani A, Krause B, Greene ER, Subramanian S, Mohr BP,

Holton JM, et al. Large language models generate functional

protein sequences across diverse families. Nat Biotechnol 2023;41:

1099e106.

11. Mathis N, Allam A, Kissling L, Marquart KF, Schmidheini L,

Solari C, et al. Predicting prime editing efficiency and product purity

by deep learning. Nat Biotechnol 2023;41:1151e9.
12. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine

learning for biologists. Nat Rev Mol Cell Biol 2022;23:40e55.

13. Wang G, Vaisman II, van Hoek ML. Machine learning prediction of

antimicrobial peptides. Methods Mol Biol 2022;2405:1e37.

14. Wang G, Zietz CM, Mudgapalli A, Wang S, Wang Z. The evolution of

the antimicrobial peptide database over 18 years: milestones and new

features. Protein Sci 2022;31:92e106.

15. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a

tool for research and education. Nucleic Acids Res 2016;44:

D1087e93.

16. Ma Y, Guo Z, Xia B, Zhang Y, Liu X, Yu Y, et al. Identification of

antimicrobial peptides from the human gut microbiome using deep

learning. Nat Biotechnol 2022;40:921e31.

17. Lee HT, Lee CC, Yang JR, Lai JZ, Chang KY. A large-scale structural

classification of antimicrobial peptides. BioMed Res Int 2015;2015:

475062.

18. Maasch J, Torres MDT, Melo MCR, de la Fuente-Nunez C. Molecular

de-extinction of ancient antimicrobial peptides enabled by machine

learning. Cell Host Microbe 2023;31:1260e12674 e6.

19. Sharma R, Shrivastava S, Kumar Singh S, Kumar A, Saxena S, Kumar

Singh R. Deep-ABPpred: identifying antibacterial peptides in protein

sequences using bidirectional LSTM with word2vec. Briefings Bioinf

2021;22:bbab065.

20. Fu H, Cao Z, Li M, Wang S. ACEP: improving antimicrobial peptides

recognition through automatic feature fusion and amino acid embed-

ding. BMC Genom 2020;21:597.

21. Bhadra P, Yan J, Li J, Fong S, Siu SWI. AmPEP: sequence-based

prediction of antimicrobial peptides using distribution patterns of

amino acid properties and random forest. Sci Rep 2018;8:1697.

22. Veltri D, Kamath U, Shehu A. Deep learning improves antimicrobial

peptide recognition. Bioinformatics 2018;34:2740e7.

23. Xiao X, Shao YT, Cheng X, Stamatovic B. iAMP-CA2L: a new CNN-

BiLSTM-SVM classifier based on cellular automata image for iden-

tifying antimicrobial peptides and their functional types. Briefings

Bioinf 2021;22:bbab209.

24. Fingerhut L, Miller DJ, Strugnell JM, Daly NL, Cooke IR. ampir: an R

package for fast genome-wide prediction of antimicrobial peptides.

Bioinformatics 2021;36:5262e3.
25. Fernandes FC, Cardoso MH, Gil-Ley A, Luchi LV, da Silva MGL,

Macedo MLR, et al. Geometric deep learning as a potential tool

for antimicrobial peptide prediction. Front Bioinform 2023;3:

1216362.

26. Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for

improving antimicrobial peptide production. Biotechnol Adv 2022;59:

107968.

27. Wen Q, Zhang L, Zhao F, Chen Y, Su Y, Zhang X, et al. Production

technology and functionality of bioactive peptides. Curr Pharmaceut

Des 2023;29:652e74.

28. Mojsoska B. Solid-phase synthesis of novel antimicrobial peptoids

with alpha- and beta-chiral side chains. Methods Enzymol 2022;663:

327e40.

29. WangXJ,WangXM, Teng D, Zhang Y,MaoRY,Wang JH. Recombinant

production of the antimicrobial peptideNZ17074 inPichia pastoris using

SUMO3 as a fusion partner. Lett Appl Microbiol 2014;59:71e8.

30. Cao J, de la Fuente-Nunez C, Ou RW, Torres MT, Pande SG,

Sinskey AJ, et al. Yeast-based synthetic biology platform for antimi-

crobial peptide production. ACS Synth Biol 2018;7:896e902.

31. Zheng Y, Du Y, Qiu Z, Liu Z, Qiao J, Li Y, et al. Nisin variants

generated by protein engineering and their properties. Bioengineering

2022;9:251.

32. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a

database on sequences, structures and signatures of antimicrobial

peptides. Nucleic Acids Res 2016;44:D1094e7.

33. Gawde U, Chakraborty S, Waghu FH, Barai RS, Khanderkar A,

Indraguru R, et al. CAMPR4: a database of natural and synthetic

antimicrobial peptides. Nucleic Acids Res 2023;51:D377e83.

34. Muller AT, Gabernet G, Hiss JA, Schneider G. modlAMP: python for

antimicrobial peptides. Bioinformatics 2017;33:2753e5.

https://doi.org/10.1016/j.apsb.2024.05.003
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref1
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref1
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref1
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref2
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref2
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref3
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref3
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref3
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref3
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref4
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref4
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref4
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref4
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref5
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref5
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref5
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref6
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref6
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref6
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref6
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref7
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref7
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref8
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref8
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref8
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref8
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref9
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref9
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref9
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref9
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref10
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref10
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref10
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref10
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref10
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref11
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref11
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref11
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref11
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref12
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref12
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref12
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref13
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref13
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref13
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref14
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref14
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref14
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref14
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref15
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref15
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref15
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref15
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref16
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref16
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref16
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref16
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref17
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref17
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref17
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref18
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref18
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref18
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref18
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref19
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref19
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref19
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref19
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref20
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref20
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref20
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref21
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref21
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref21
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref22
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref22
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref22
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref23
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref23
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref23
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref23
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref24
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref24
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref24
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref24
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref25
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref25
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref25
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref25
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref26
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref26
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref26
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref27
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref27
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref27
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref27
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref28
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref28
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref28
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref28
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref29
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref29
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref29
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref29
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref30
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref30
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref30
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref30
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref31
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref31
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref31
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref32
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref32
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref32
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref32
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref33
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref33
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref33
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref33
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref34
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref34
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref34


3492 Yu Zhang et al.
35. Meurer WJ, Tolles J. Logistic regression diagnostics: understanding

how well a model predicts outcomes. JAMA 2017;317:1068e9.

36. Hu X, Sun Y, Gao J, Hu Y, Ju F, Yin B. Probabilistic linear discrim-

inant analysis based on L(1)-norm and its bayesian variational infer-

ence. IEEE Trans Cybern 2022;52:1616e27.
37. Wang J, Wang L, Nie F, Li X. A novel formulation of trace ratio linear

discriminant analysis. IEEE Transact Neural Networks Learn Syst

2022;33:5568e78.
38. Zhang C, Pham M, Fu S, Liu Y. Robust multicategory support vector

machines using difference convex algorithm. Math Program 2018;

169:277e305.

39. Paul A, Mukherjee DP, Das P, Gangopadhyay A, Chintha AR,

Kundu S. Improved random forest for classification. IEEE Trans

Image Process 2018;27:4012e24.

40. Li YL, Wang S. BooDet: gradient boosting object detection with ad-

ditive learning-based prediction aggregation. IEEE Trans Image Pro-

cess 2022;31:2620e32.

41. Wang C, Xu S, Yang J. Adaboost algorithm in artificial intelligence for

optimizing the IRI prediction accuracy of asphalt concrete pavement.

Sensors 2021;21:5682.

42. Samet H. K-nearest neighbor finding using MaxNearestDist. IEEE

Trans Pattern Anal Mach Intell 2008;30:243e52.

43. Wu Z, Jiang D, Wang J, Zhang X, Du H, Pan L, et al. Knowledge-

based BERT: a method to extract molecular features like computa-

tional chemists. Briefings Bioinf 2022;23:bbac131.

44. Prabhakar SK, Won DO. Medical text classification using hybrid deep

learning models with multihead attention. Comput Intell Neurosci

2021;2021:9425655.

45. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A,

McPherson A, et al. A survey of best practices for RNA-seq data

analysis. Genome Biol 2016;17:13.

46. Miller SM, Wang T, Liu DR. Phage-assisted continuous and non-

continuous evolution. Nat Protoc 2020;15:4101e27.

47. Des Soye BJ, Gerbasi VR, Thomas PM, Kelleher NL, Jewett MC. A

highly productive, one-pot cell-free protein synthesis platform based

on genomically recoded Escherichia coli. Cell Chem Biol 2019;26.

1743-54.e9.

48. Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR. An inte-

grated cell-free metabolic platform for protein production and syn-

thetic biology. Mol Syst Biol 2008;4:220.
49. Jadhav K, Singh R, Ray E, Singh AK, Verma RK. Taming the devil:

antimicrobial peptides for safer TB therapeutics. Curr Protein Pept Sci

2022;23:643e56.

50. Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides to-

wards clinical application: delivery and formulation. Adv Drug Deliv

Rev 2021;175:113818.

51. Haridas V, Sadanandan S, Dheepthi NU. Sortase-based bio-organic

strategies for macromolecular synthesis. Chembiochem 2014;15:

1857e67.

52. Wang T, Badran AH, Huang TP, Liu DR. Continuous directed evo-

lution of proteins with improved soluble expression. Nat Chem Biol

2018;14:972e80.
53. Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D. Lacto-

bacillus plantarum and its probiotic and food potentialities. Probiotics

Antimicrob Proteins 2017;9:111e22.

54. Cuevas-Gonzalez PF, Liceaga AM, Aguilar-Toala JE. Postbiotics and

paraprobiotics: from concepts to applications. Food Res Int 2020;136:

109502.

55. Liu Q, Liu Q, Meng H, Lv H, Liu Y, Liu J, et al. Staphylococcus

epidermidis contributes to healthy maturation of the nasal microbiome

by stimulating antimicrobial peptide production. Cell Host Microbe

2020;27:68e78 e5.

56. Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, et al.

Fluorescence-activated droplet sorting (FADS): efficient microfluidic

cell sorting based on enzymatic activity. Lab Chip 2009;9:1850e8.

57. Pedelacq JD, Cabantous S. Development and applications of super-

folder and split fluorescent protein detection systems in biology. Int J

Mol Sci 2019;20:3479.

58. Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, et al.

Atmospheric and room temperature plasma (ARTP) as a new powerful

mutagenesis tool. Appl Microbiol Biotechnol 2014;98:5387e96.

59. Rathinakumar R, Wimley WC. High-throughput discovery of broad-

spectrum peptide antibiotics. FASEB J 2010;24:3232e8.

60. Rathinakumar R, Walkenhorst WF, Wimley WC. Broad-spectrum

antimicrobial peptides by rational combinatorial design and high-

throughput screening: the importance of interfacial activity. J Am

Chem Soc 2009;131:7609e17.

61. Zou J, Jiang H, Cheng H, Fang J, Huang G. Strategies for screening,

purification and characterization of bacteriocins. Int J Biol Macromol

2018;117:781e9.

http://refhub.elsevier.com/S2211-3835(24)00180-1/sref35
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref35
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref35
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref36
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref36
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref36
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref36
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref37
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref37
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref37
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref37
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref38
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref38
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref38
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref38
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref39
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref39
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref39
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref39
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref40
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref40
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref40
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref40
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref41
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref41
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref41
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref42
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref42
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref42
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref43
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref43
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref43
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref44
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref44
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref44
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref45
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref45
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref45
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref46
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref46
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref46
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref47
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref47
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref47
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref47
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref48
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref48
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref48
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref49
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref49
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref49
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref49
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref50
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref50
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref50
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref51
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref51
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref51
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref51
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref52
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref52
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref52
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref52
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref53
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref53
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref53
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref53
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref54
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref54
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref54
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref55
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref55
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref55
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref55
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref55
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref56
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref56
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref56
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref56
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref57
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref57
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref57
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref58
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref58
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref58
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref58
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref59
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref59
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref59
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref60
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref60
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref60
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref60
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref60
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref61
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref61
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref61
http://refhub.elsevier.com/S2211-3835(24)00180-1/sref61

	Screening antimicrobial peptides and probiotics using multiple deep learning and directed evolution strategies
	1. Introduction
	2. Materials and methods
	2.1. Data collection
	2.2. Construction of the COMDEL model
	2.3. Evaluation metrics of multiple models
	2.4. Peptide abundance calculations in probiotics
	2.5. Strains, plasmids and gene synthesis
	2.6. Plasmid construction and application
	2.7. Preparation of SrtA primary M13 phage for PANCE
	2.8. Processes of PANCE for SrtA evolution
	2.9. Antimicrobial activity assay of AMP candidates
	2.10. Random 150N ORF library construction for high-throughput screening of AMPs
	2.11. Next generation sequencing for screening AMPs
	2.12. Cell-free AMP synthesis (CFAS) system
	2.13. AMPs purification form CFPS reaction
	2.14. ARTP for mutant generation
	2.15. Preparation of microfluid chips for fluorescence-activated droplet sorting (FADS)
	2.16. Preparation of microfluid devices for FADS
	2.17. Statistical analysis

	3. Results
	3.1. Establishment of COMDEL model for AMP identification
	3.2. Performance comparison of COMDEL with other AMP identification models
	3.3. Optimizing COMDEL model using high-throughput AMP screening technology
	3.4. AMP mining in edible crops using COMDEL
	3.5. Biosynthesis of broad-spectrum AMPs derived from edible crops identified by COMDEL
	3.6. Screening edible probiotics for high production of AMPs by COMDEL and FADS
	3.7. Data availability

	4. Discussion
	5. Conclusions
	Acknowledgments
	Author contributions
	Conflicts of interest
	Conflicts of interest
	Appendix A. Supporting information
	References


