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A B S T R A C T

Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in 
maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to 
the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. 
The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications 
(PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes. Multiple proteins 
undergo PTMs that influence autophagy regulation. Methylation modifications on non-histone lysine and argi-
nine residues have been identified as common PTMs critical to various life processes. This paper focused on the 
regulatory effects of non-histone methylation modifications on autophagy, summarizing related research on 
signaling pathways involved in autophagy-related non-histone methylation, and discussing current challenges 
and clinical significance. Our review concludes that non-histone methylation plays a pivotal role in the regu-
lation of autophagy and its associated signaling pathways. Targeting non-histone methylation offers a promising 
strategy for therapeutic interventions in diseases related to autophagy dysfunction, such as cancer and neuro-
degenerative disorders. These findings provide a theoretical basis for the development of non-histone- 
methylation-targeted drugs for clinical use.

1. Introduction

Autophagy is a process through which eukaryotic cells respond to 
environmental pressures, such as energy shortages, nutrient depriva-
tion, or internal signals like metamorphosis and differentiation. During 
this process, autophagosomes from formed under the regulation of 
autophagy-related genes (ATGs), leading to the lysosome-dependent 
degradation and recycling of invasive pathogens, protein aggregates, 
and dysfunctional organelles in a lysosome-dependent manner [1,2]. 
Autophagy plays a crucial role in maintaining homeostasis, preventing 
metabolic stress, and promoting growth and metabolism [3,4]. How-
ever, understanding suggests that autophagy is a double-edged sword 

[5–7]. Research has increasingly revealed that dysregulated autophagy 
can contribute to diseases such as tumors, neurodegenerative disorders, 
and autoimmune deficiencies by either supporting cancer cell growth of 
harming normal cells [8,9]. Therefore, further elucidation of the regu-
latory mechanisms of autophagy is essential for advancing our under-
standing of this process and developing effective interventions.

Currently, autophagy is classified into three types based on the 
transported content and mode of action: macroautophagy (commonly 
referred to as autophagy), chaperone-mediated autophagy, and micro-
autophagy [10,11]. This precisely regulated and highly conserved pro-
cess that involves the rearrangement of the cell's inner membrane and 
comprises multiple stages: autophagy initiation of autophagy, 
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autophagosome formation, fusion of autophagosomes with lysosomes, 
and the subsequent degradation and recycling of cellular components 
[12,13]. To date, more than 40 ATGs, conserved in both yeast and 
mammals, have been identified. Various proteins regulate autophagy by 
directly or indirectly interacting with ATGs [14]. For example, the ki-
nases mammalian target of rapamycin (mTOR) and adenosine 
monophosphate-activated protein kinase (AMPK) sense nutritional and 
stress signals inside and outside cells, regulating autophagy by modu-
lating the activity of the Unc-51-like autophagy-activated kinase 1 
(ULK1) complex [15]. ULK1, the sole autophagy-associated protein with 
serine/threonine kinase activity, acts as both an effector and regulator of 
the upstream receptors such as mTOR and AMPK, driving the formation 
of downstream autophagosomes [16]. Typically, AMPK is inactive while 
mTOR is active when phosphorylated. Active mTOR inhibits autophagy 
by disrupting interaction between ULK1 and AMPK, phosphorylating of 
ULK1 (at Ser637 and Ser757) and ATG13 (at Ser258), and inhibiting the 
autophagy-promoting kinase activity of the ULK1 complex, thereby 
restraining autophagy [17–19]. In contrast, under conditions such as 
starvation or other stress conditions, AMPK becomes activated and in-
hibits mTOR phosphorylation, leading to mTOR inactivation and ULK1 
dissociation. Activated AMPK mediates the phosphorylation of ULK1 at 
specific sites (Ser317, Ser467, Ser555, Ser574, Ser637, and Ser777), 
while ULK1 autophosphorylation at Thr180 enhances its activity. ULK1 
phosphorylates various ATGs. The ULK1 complex is subsequently 
transferred to the endoplasmic reticulum, initiating autophagy [20,21].

The regulatory mechanisms of autophagy within signaling pathways 
are complex, and not fully understood. Studies suggest that epigenetic 
modification is indispensable for regulating autophagy [22,23]. Epige-
netic modifications are changes to the genome that do not alter the DNA 
sequence but can affect gene expression, often through mechanisms like 
DNA methylation, histone modification, chromatin remodeling, micro-
RNAs, and long non-coding RNAs, interact dynamically with environ-
mental factors like nutrition, pathogens, and climate to regulate gene 
expression and the emergence of specific phenotypes [24,25]. These 
interactions underscore the complex and multilayered nature of gene 
regulation in eukaryotic systems, where gene expression is tissue- 
specific, developmentally regulated, and influenced by environmental 
cues [26]. Moreover, studies have demonstrated that genome and epi-
genome variations significantly impact health and productivity [27]. 
Epigenetic modifications play an intricate and critical role in regulating 
many biological processes, including genome transcription, stability and 
protein function [28–30]. Whole-genome DNA methylation profiling 
has been employed to distinguish rheumatoid arthritis cases from con-
trols, illustrating the diagnostic potential of epigenetic studies [31]. 
Such findings provide a foundation for exploring non-histone protein 
methylation as a regulatory mechanism in autophagy.

Post-translational modifications (PTMs) are chemical changes that 
occur after protein synthesis, influencing their activity, stability, and 
interactions. Recent studies have provided important insights into the 
role of PTMs in various biological processes. For instance, Gao et al. [32] 
observed an increase in the expression of DOT1L and H3K79me2 during 
osteoclast differentiation. Inhibition of DOT1L was found to enhance 
autophagic activity, which is linked to osteoclast differentiation and 
bone resorption capacity. Similarly, Li et al. [33] demonstrated that 
EZH2 regulates the survival of vascular smooth muscle cells (VSMCs) by 
inhibiting apoptosis associated with aortic dissection. This is achieved 
through the catalysis of H3K27me2/3 and the subsequent suppression of 
the MEK-ERK1/2 signaling pathway. PTMs of histones is a significant 
epigenetic regulatory method, with various modifications occurring on 
the four histone proteins H2A, H2B, H3, and H4, which make up nu-
cleosomes. These modifications include ubiquitination, methylation, 
acetylation, and phosphorylation [34–36]. Emerging evidence suggests 
that protein methylation often occurs in concert with other PTMs, such 
as acetylation and ubiquitination, forming a complex regulatory 
network. For example, the interplay between methylation and acetyla-
tion on transcription factors can dynamically influence autophagy- 

related gene expression, while ubiquitination can mediate the degra-
dation of methylation-modified proteins, adding another layer of regu-
lation [2]. Together, these modifications form the “histone code”, a 
system regulating chromatin-related activities. Histone methylation 
modification is widely present in the PTMs of proteins [37,38]. This 
process involves the enzymatic transfer of methyl groups from the donor 
molecule S-adenosylmethionine to lysine or arginine residues on histone 
or non-histone proteins by methyltransferases, thereby modulating 
specific signaling pathways [39–42]. Lysine methylation can occur in 
mono-, di-, or trimethylated states, with each state affecting the 
expression of related genes (Fig. 1). Similarly, arginine can undergo 
mono- and demethylation resulting in either symmetric or asymmetric 
configurations depending on the methylation pattern (Fig. 2). Different 
modifications affect chromatin properties and can either activate or 
inhibit gene expression [43–45]. Recent advances in protein methyl-
ation research have unveiled its critical roles in diverse cellular func-
tions and disease contexts, including cancer, neurodegeneration, and 
metabolic disorders. These findings underscore the importance of 
exploring methylation beyond histones, particularly its regulatory 
functions in pathways like autophagy [22,38].

In recent years, methylation modifications have been increasingly 
observed in non-histone proteins, indicating its role in regulating pro-
tein function as a common form of protein PTM [46,47]. Methylation of 
non-histone proteins has been shown to influence protein activity, 
protein-protein interactions, and other PTMs [47–49]. Many transcrip-
tion factors can be methylated, suggesting that non-histone methylation 
modifications are extensively involved in epigenetic regulation [50–52]. 
Therefore, it is essential to review the research on non-histone methyl-
ation modifications and their relationship to autophagy, providing a 
theoretical basis and identifying new directions for the studying of PTMs 
[22,23,53]. This review aims to provide a comprehensive summary of 
the regulatory role of non-histone methylation in autophagy and clari-
fied how ATGs induced changes in non-histone methylation 
modification-related signaling pathways across different biological 
processes [2,54]. Although non-histone methylation has been increas-
ingly observed to regulate protein function, protein-protein interactions, 
and other PTMs, this review is one of the first to focus specifically on the 
interaction between non-histone methylation modifications and auto-
phagy regulation. By providing an in-depth analysis of current findings, 
we aim to highlight the potential of targeting protein methylation as a 
therapeutic strategy for autophagy-related diseases.

2. Overview of autophagy

Autophagy is a conserved stress response that occurring widely in 
eukaryotes and is triggered by changes in both internal and external 
cellular environments [55–57]. It plays a crucial role in numerous 
physiological and pathological processes, including cell differentiation, 
development, immunity, metabolism, neurodegenerative diseases, and 
tumors, thereby helping to maintain cellular integrity and stability 
[58–60]. Based on the method of transporting intracellular substrates to 
lysosomes, autophagy is categorized into three types: macroautophagy, 
microautophagy, and chaperone-mediated autophagy [8,61]. In mac-
roautophagy, a separation membrane sequesters portions of the cyto-
plasm to form autophagosomes, which subsequently fuse with 
lysosomes to form autolysosomes that degrade their contents [62,63]. In 
microautophagy, the lysosome invaginates inward through its mem-
brane to engulf small cytoplasmic components. In contrast, chaperone- 
mediated autophagy does not involve membrane reorganization [10]. 
Autophagy can also further classified into selective or non-selective 
autophagy based on cargo selectivity (Fig. 3). Non-selective autophagy 
involves the bulk transport of organelles and other cytoplasmic com-
ponents to lysosomes, while selective autophagy specifically degrades 
certain substrates. The autophagy process [64] primarily includes four 
main stages: the initiation of autophagy, the formation of autophago-
somes, the fusion of autophagosomes with lysosomes, and the 
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degradation of autophagosomes [11,55,65]. This process can be regu-
lated by different ATGs. In yeast, the induction of autophagosome for-
mation during macroautophagy is regulated by the ATG1-ATG13- 
ATG17-ATG31-ATG29 kinase complex, while in mammalian cells, it is 
regulated by the ULK1/2-ATG13-RB1CC1 complex [66,67]. Phagophore 
nucleation is mediated by the class III phosphatidylinositol 3-kinase 
(PtdIns3K) complex containing ATG14. The ATG9-ATG2-ATG18 com-
plexes are involved in the expansion, elongation, and maturation of 
phagosomes, regulated by the ATG5-ATG12-ATG16 complex and 
microtubule-associated protein 1 light chain 3 (LC3). Finally, the auto-
phagosomes fuses with the lysosomes, where lysosomal degrade the 
contents. The resulting nutrients are then released back into the cyto-
plasm for reuse by the cell [8,68].

The mTOR signaling pathway has been identified as a central regu-
latory mechanism for autophagy [69–71]. Xu et al. [72] revealed that 
the overexpression of silent information regulator 3 (SIRT3) inhibited 
the activation of the phosphatidylinositol 3-kinase/protein kinase B/ 
mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway 
induced by interleukin-1 beta (IL-1β), thereby suppressing the auto-
phagy process. Similarly, Cai et al. [73] demonstrated that miR-27a 
targets and silenced the PI3K gene by targeting its 3’-UTR. Compared 
to normal cells and tissues, PI3K mRNA levels were downregulated in 
osteoarthritis (OA) cartilage and IL-1β-treated articular chondrocytes 

were down-regulated, indicating that miR-27a promotes autophagy and 
apoptosis in IL-1β-treated chondrocytes by inhibiting the PI3K/Akt/ 
mTOR signaling pathway. Wu et al. [74] used a passive rat model of 
Heymann nephritis and puromycin aminonucleotide in vitro to immor-
talize mouse podocytes and confirmed that mTOR disrupted podocyte 
homeostasis and induced podocyte damage through the mTOR-ULK1 
pathway, leading to reduce autophagy. AMPK can modulate the auto-
phagy process by sensing intracellular adenine nucleotides, It becomes 
activated when the intracellular AMP/ATP ratio increases [75–77]. 
Unlike the inhibitory phosphorylation of mTOR complex 1 (mTORC1), 
studies have shown that the ULK1 complex is activated by the direct 
phosphorylation of AMPK, which in turn activates the autophagy pro-
cess [78]. Maria et al. [79] demonstrated that hepatocytes and mouse 
embryonic fibroblasts(MEFs) lacking AMPK or ULK1 have defects in 
mitophagy. Additionally, Lin et al. [80] showed that D-mannose may 
activate autophagy in IL-1β-treated rat chondrocytes by promoting the 
phosphorylation of AMPK, thereby mitigating OA degeneration.

3. Non-histone protein methylation of ATG proteins

ATG proteins are crucial for the formation of autophagosomes, 
where they form functional protein complexes that regulate various 
stages of autophagy. During this process, ULK1 complexes initiate 

Fig. 1. Lysine and Arginine methylation. (A) Lysine and arginine methylation are a common type of post-translational modifications of proteins. Methyltransferase 
(KMT) catalyzes mono-, di- and trimethylation of lysine residues and can be reversibly regulated by lysine demethylase (KDM). (B) Arginine occurs under the action 
of arginine methyltransferase, and there are two types of dimethylation, namely asymmetric dimethyl arginine (ADMA) or symmetric dimethyl arginine (SDMA).
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autophagy, while Class III PI3K-Beclin-1 complexes control the nucle-
ation of autophagosomes. These complexes are sequentially activated to 
regulate autophagy [81–83]. Song et al. [84] showed that the ATG5- 
ATG12-ATG16L1 ubiquitin-like conjugation system could be methyl-
ated by SET domain lysine methyltransferase 7 (SETD7) at lysine 151 
(K151). This methylation disrupts the ability of ATG16L1 to bind to the 
ATG5-ATG12 conjugate, thereby inhibiting autophagy initiated by the 
gene. Furthermore, methylation at K151 also prevents casein kinase 2 
(CSNK2) from phosphorylating ATG16L1 at serine 139, further inhib-
iting autophagy. However, ATG16L1 can be demethylated by lysine- 
specific demethylase 1 (LSD1), reactivating autophagy [22].

Additionally, the methylation of ATG16L1 by SETD7 can block its 
phosphorylation at serine 139 by tyrosine kinase 2, thus inhibiting the 
autophagy process. On the other hand, when ATG16L1 is phosphory-
lated, its interaction with SETD7 decrease, promoting autophagy 
[22,84]. Ultimately, the ATG12-ATG5-ATG16L1 complex recruits and 
activates the E2-like protein ATG3, facilitating the binding of 
microtubule-associated protein 1(LC3) to phosphatidylethanolamine 
(PE), converting LC3BI to LC3BII and promoting the elongation and 
closure of the autophagosome membrane. These findings suggest that 
the phosphorylation and methylation of ATG16L1 interact to regulate 
autophagy in a coordinated manner (Fig. 4).

ULK1 is a key regulator of autophagy initiation, and vacuolar protein 
sorting 34 (VPS34) is the only Class III PI3K in mammals [85–87]. Both 

of them are critical for the early stages of autophagy. Active ULK1 
regulates the recruitment of ATG14L-containing VPS34 complexes, 
leading to the phosphorylation of Beclin-1, a binding partner of VPS34, 
and ultimately enhancing the activity of VPS34 complexes [88,89]. Two 
ubiquitin-binding systems then promote the lipidation of LC3 and allow 
autophagosomes to recognize and package cargo. Hypoxia-inducible 
factor 1-alpha (HIF-1α) can release Beclin-1 from Bcl-2, playing a 
crucial role in autophagy induction [20]. The symmetric dimethylation 
of ULK1 at arginine 170 (R170) is essential for autophagy induction. It is 
regulated by protein arginine methyltransferase 5 (PRMT5) and lysine- 
specific demethylase 5C (KDM5C), forming dynamic cycle that promotes 
autophagosome formation and mitochondrial clearance. Under hypoxic 
conditions, the activity of KDM5C, which requires oxygen as a cofactor, 
declines, leading to the accumulation of ULK1 symmetric dimethylation 
at R170, promoting the autophosphorylation of threonine 180 (T180) 
and activating ULK1. This activation triggers the phosphorylation of 
ATG13 and Beclin-1, inducing autophagy and reducing cellular oxygen 
consumption [20,90].

4. Non-histone protein methylation-induced signaling pathway 
activation and autophagy

The methylation of lysine and arginine residues on non-histone 
proteins is a critical regulatory mechanism for numerous signaling 

Fig. 2. Methyltransferase-non-histone methylation interaction networks. (A-B) An interaction network depicting the interaction between the lysine methyl-
transferases (SETD7, G9a) and non-histone lysine methylation is demonstrated based on published literature. For instance, DNMT1 has a complicated methylation 
interaction, which is dictated by the type of methyltransferases. (C-D). This interaction network illustrates how arginine methyltransferases (PRMTs), including 
PRMT1 and PRMT5, interact with non-histone arginine methylation. E2F1 and SPT5 exhibit intricate methylation that depends on the type of arginine 
methyltransferases.
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pathways. Increasing evidence suggests that non-histone protein 
methylation is connected to several key pathways, including nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal 
transducer and activator of transcription 3 (STAT3), Akt, p53, Wnt/ 
β-catenin, E2F transcription factor 1 (E2F1), HIF1, and the Hippo 

signaling pathway [91–94]. Autophagy is influenced by non-histone 
methylation through modulation of these different pathways 
(Table 1). This review summarized the changes in key signaling path-
ways affected by non-histone protein methylation and their relationship 
to autophagy (Figs. 5–7).

Fig. 3. Types of autophagy. Selective autophagy (i) such as mitophagy, ER-phagy, ribophagy and Lipophay etc. Non-selective autophagy (ii) During macroautophagy, 
abnormally aggregated proteins and microorganisms are recruited into the phagosome, which could then be extended and closed to form an autophagosome, 
subsequently fuses with lysosomes for degradation.

Fig. 4. Non-histone methylation regulates autophagy gene expression. (A) SETD7 methylates lysine 151 of ATG16L1 to inhibit the activation of autophagy genes, 
while LSD1 demethylates it to activate autophagy. (B) PRMT5 catalyzes the symmetric dimethylation of arginine 170 in ULK1, which promotes the phosphorylation 
of T180, and subsequent phosphorylation of Atg13 and Beclin 1 to form autophagosomes. KDM5C removes the modification at this site.
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4.1. NF-κB pathway

NF-κB is a crucial transcription factor that regulates ATGs such as 
Beclin-1, LC3II, ATG7 and others, playing a significant role in diseases 
like colitis in mice, glioma, and liver fibrosis [95–97]. Peng et al. [98] 
found that autophagy, mediated by ATG5, sequestered p65 proteins in 
the cytoplasm, blocking NF-κB signaling and thereby inhibiting in-
flammatory responses in renal epithelium. Shen et al. [99] observed that 
chemokine receptor 5 (CXCR5) inhibited hippocampal autophagy dur-
ing sepsis through NF-κB signaling, leading to cognitive dysfunction. 
However, the downregulation of CXCR5 restored autophagy and alle-
viated the pro-inflammatory environment in the hippocampus. In a 
mouse model of liver fibrosis induced by carbon tetrachloride (CCl4) 
injection, Fas/FasL facilitated NF-κB p65/p53 upregulated modulator of 
apoptosis (PUMA)-regulated hepatocyte apoptosis via autophagy, 
thereby exacerbating liver fibrosis [97]. Recent studies have shown that 
various methyltransferases can methylate different sites of NF-κB, 
influencing cellular autophagy [100]. For example, the overexpression 
of leucine-rich repeat protein 11 (FBXL11) inhibits NF-κB activity, and 
FBXL11/nuclear receptor binding SET domain protein 1 (NSD1) regu-
lates the transcriptional activity of p65 through reversible lysine 
methylation at the lysine 218 (K218) and lysine 221 (K221) sites [101]. 
The SET and MYND structural domain-containing family protein 2 
(SMYD2) methylates non-histone proteins such as p53, retinoblastoma 
protein (Rb), heat shock protein 90 (HSP90), and p65. SMYD2 can 
methylate p65 at lysine 310 (K310), promoting breast cancer cell growth 
[102]. Additionally, the methyltransferase SET domain containing 9 
(SETD9) can methylate p65 at the lysine 314/lysine 315 (K314/K315) 
sites, leading to the degradation of promoter-associated p65 protein and 
inhibition of NF-κB activity [103]. Another study reported that SETD9 

can also methylate p65 at lysine (K37), affecting its stability in response 
to TNF-α stimulation and regulating p65 binding to promoters [104]. 
Protein arginine methyltransferase 1(PRMT1) could methylates the 
arginine 30 (R30) site of p65, and asymmetric dimethylation at R30 
inhibits p65 binding to DNA, thereby suppressing the response of NF-κB 
target genes to TNF-α [105]. Conversely, PRMT1-mediated methylation 
protects cellular FOS (c-Fos) from autophagic degradation and promotes 
gastric tumorigenesis [106].

4.2. STAT3 pathway

STAT3 is a transcription factor that regulates the expression of key 
genes involved in autophagy, cellular growth, and other biological 
processes, including ATGs, B-cell lymphoma 2 (BCL2), myeloid cell 
leukemia 1 (MCL1), and Bcl-2/adenovirus E1B 19-kDa-interacting pro-
tein 3 (BNIP3) upon cellular stimulation. It plays a crucial role in cellular 
growth, autophagy, and other biological processes [107–110]. In cases 
of sterile inflammatory osteolysis, the STAT3 signaling pathway is 
significantly activated in macrophages. Inhibiting STAT3 has been 
shown to activate the Phosphatase and tension homolog (PTEN)- 
induced kinase 1 (PINK1)-dependent mitochondrial autophagy 
pathway, mitigating the formation of osteoclasts induced by inflam-
matory macrophages [111]. Research by Liang et al. [112] demon-
strated that amilorotinib induced apoptosis and autophagy in human 
lung cancer cells. In addition, blocking autophagy further enhanced the 
drug's cytotoxic effect and improved its anti-angiogenic properties 
through Janus kinase 2 (JAK2)/STAT3/vascular endothelial growth 
factor A (VEGFA) signaling. In a study using Trichostatin A in 
lipopolysaccharide-induced RAW264.7 cells, treatment reduced STAT3 
phosphorylation in the nucleus, increased forkhead box O3a (FOXO3a) 
phosphorylation, and activated the STAT3/FOXO3a signaling pathway, 
which promoted macrophage autophagy and reduced inflammatory 
responses [113]. Therefore, the active state of STAT3 is crucial for the 
regulation of autophagy. Yang et al. [114] identified that tumor necrosis 
factor-alpha-induced protein 8-like 1 (TIPE1) inhibited the tumorigen-
esis and progression of osteosarcoma by modulating the PRMT1- 
mediated methylation of the arginine 688 (R688) site on STAT3. Yin 
et al. [115] demonstrated that histone demethylase jumonji domain- 
containing protein 1c (Jmjd1c) controlled plasma cell differentiation 
by demethylating lysine 140 (Lys140) on STAT3, thereby reducing 
antibody production, and alleviating rheumatoid arthritis. Additionally, 
PRMT5 enhanced STAT3 signaling by methylating arginine at position 
57 of Smad7, promoting the proliferation, survival, and tumorigenicity 
of non-small cell lung cancer cells [116]. Based on mass spectrometry 
and fixed-point mutagenesis analyses, Song et al. [117] revealed that 
nuclear receptor-binding SET domain protein 2 (NSD2) methylated 
STAT3 at lysine 163 (K163), promoting the activation of the STAT3 
pathway and enhancing tumor angiogenesis. Silencing NSD2 inhibited 
autophagy and alleviated pulmonary arterial hypertension in rat 
models. Luo et al. [118] reported that long non-coding RNA-p21 
(lncRNA-p21) could enhance the methyltransferase activity of enhancer 
of zeste homolog 2 (EZH2), leading to increased lysine methylation of 
STAT3 and alterations in neuroendocrine differentiation in prostate 
cancer. PRMT6 dimethylated STAT3 at the arginine 729 (R729) site. 
Both in vivo and in vitro studies confirmed that PRMT6 overexpression 
was positively correlated with invasion-related gene expression in breast 
cancer cells, with the R729K mutant of STAT3 exhibiting the opposite 
effect, underscoring the significance of STAT3 methylation at R729 in 
PRMT6-mediated tumor metastasis [92].

4.3. Akt pathway

Akt, a serine/threonine kinase, is a key regulator of cellular auto-
phagy [119]. And plays a crucial role in the development and progres-
sion of various inflammatory and tumor-related diseases, especially 
under conditions of starvation and cytokine influence [120,121]. For 

Table 1 
List of protein methylation in autophagy.

Protein 
modification

Regulator Target 
protein

Autophagy 
activation or 
inhibition

References

Non-histone 
methylation

FBXL11/ 
NSD1

p65(K218, 
K211) Activation [101]

SMYD2 p65(K310) Inhibition [102]
SETD9 p65(K314) – [103]
SET7/9 p65(K37) – [104]
PRMT1 p65(R30) Inhibition [105]

JMJD1C STAT3 
(K140)

– [115]

NSD2
STAT3 
(K163) Activation [117]

E2H2
STAT3 
(K180) – [118]

TIFE1 STAT3 
(R688)

– [114]

PRMT6 STAT3 
(R729)

Inhibition [92]

LSD1 p53(K370) Inhibition [142]
SMYD2/ 
SED7 p53(K30) Inhibition [140]

KDM3A p53(K372) Activation [143]
G9a and 
GLP

p53(K373) Activation [144]

SET8 p53(K382) Inhibition [139]
AKT E2H2(K49) – [160]
LAST2 mTORC1 Inhibition [169]
SET1A YAP(K342) – [174]

STED6
E2F1 
(K117) Activation [185]

Set9 E2F1 
(K185)

– [188]

Set7 HIF-1α 
(R32)

Inhibition [198]

PRMT3
HIF-1α 
(R282) – [197]
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example, the antioxidant enzyme peroxiredoxin 1 (PRDX1) has been 
shown to enhance cellular autophagy by activating the PTEN-Akt 
signaling pathway, which in turn reduces reactive oxygen species 
(ROS) levels and apoptosis, thereby mitigating neuronal damage [122]. 
Additionally, mitochondrial ROS are involved in copper-induced auto-
phagy through the Akt/AMPK/mTOR pathway. Silencing of ATG5, 
which inhibits autophagy, exacerbates CuSO4-induced apoptosis [123]. 
He et al. [124] demonstrated that ginsenoside Rg2 could activate the 
Akt/mTOR pathway, suppress autophagy through inhibition of LC3II 
and upregulation of p62 expression, and ameliorate liver fibrosis 
induced by a high-fat diet and lipopolysaccharide-triggered activation of 
HSCT-6 cells. In a streptozotocin-induced diabetic mouse model, paeo-
niflorin bound to vascular endothelial growth factor receptor 2 
(VEGFR2), promoted autophagy through the PI3K/AKT signaling 
pathway, and inhibited apoptosis, providing protective effects on dia-
betic nephropathic podocytes [125]. Non-histone lysine-specific 
methylation, is a prevalent PTM, plays a novel role in regulating protein 
function, mainly by affecting protein stability [126,127]. For instance, 
SET domain, bifurcated 1 (SETDB1)-mediated methylation of Akt at 
lysine 64 (K64) is involved plays a key role in tumorigenesis. SETDB1- 
mediated trimethylation of monocarboxylate transporter 1 (MCT1) at 
lysine 473 (K473) inhibits the interaction between MCT1 and Toll- 

interacting protein (Tollip), blocking Tollip-mediated autophagic 
degradation of MCT1 [128]. Zhang et al. [129] reported that arginine 
methyltransferase 1 (CARM1) methylated the arginine 23 (R23) site of 
protein phosphatase 1 catalytic subunit alpha (PPP1CA), leading to the 
dephosphorylation of Akt at threonine 450 (T450) and AMPK at threo-
nine 172 (T172). Besides, this modification enhanced the activities of 
phosphofructokinase-1 and fructose-2,6-bisphosphate kinase 3, ulti-
mately promoting glycolysis. Their study involving mouse embryonic 
fibroblasts (MEFs) under glucose starvation conditions revealed a sig-
nificant upregulated level of CARM1, establishing a positive correlation 
between CARM1 and cellular autophagic activity [130]. Moreover, 
PRMT5 methylated Akt1 at arginine 15 (Arg15), facilitating the 
recruitment of upstream-activated kinases phosphoinositide-dependent 
kinase 1 (PDK1) and mTOR2, thereby promoting tumor metastasis [93].

4.4. p53 pathway

The p53 gene is a crucial tumor suppressor that plays a significant 
role in regulating apoptosis, senescence, and cellular autophagy through 
methylation of lysine residues and protein interactions [131,132]. 
Huang et al. [133] utilized CRISPR/Cas9 to knock down miR-34a and 
miR-34b in colorectal cancer cells, resulting in a significant decreased in 

Fig. 5. Effects of methylation of non-histone lysine and arginine on transcription factors. (A) PRMT1 methylates the R30 site on p65 and protects c-Fos from 
autophagic degradation. Methylation of SET7/9 at the K37, K314, and K315 sites on p65 inhibits the stability of the DNA-p65 complex and promotes the degradation 
of p65 proteins, inhibiting NF-κB activity. FBXL11/NSD1 regulates p65 transcriptional activity by lysine methylation at the K218 and K221 sites to regulate the 
transcriptional activity of p65. SMYD2 methylates the K310 site on p65 to promote breast cancer cell proliferation. SETD6 monomethylates p65 at the K310 site to 
recruit GLP, leading to the repression of the p65 target genes. (B) SETD7 demethylates STAT3 at K140 to negatively regulate STAT3 target gene transcription. 
JMJD1C controls plasma cell differentiation and reduces antibody production by demethylating Lys140 of STAT3. NSD2 methylates STAT3 at K163 to promote 
STAT3 pathway activation and enhance tumor neogenesis. Knockdown of NSD2 inhibits autophagy. EZH2 trimethylates the K180 site of STAT3 and alters neuro-
endocrine differentiation in prostate cancer. TIPE1 inhibits osteosarcoma tumor progression by regulating PRMT1-mediated methylation at STAT3 arginine 688. 
PRMT6 is dimethylated at STAT3 arginine 729, thereby promoting tumor metastasis. (C) PRMT5 methylates Akt1 at R15 and recruits upstream-activated kinases 
PDK1 and mTOR2 to promote tumor metastasis. Additionally, it inhibits autophagy. (D) LSD1 demethylates p53 at K370, thereby inhibiting autophagy. SMYD2 and 
SETD7 monomethylate p53 at the K370 site, which inhibits its activity. SETD7 methylates p53 at K372, activating the transcriptional activity of p53. KDM3A 
demethylates p53 at K372 and inhibits its transcriptional activity, thereby inducing chemoresistance in breast cancer cells. G9a and GLP can demethylate p53 at K373 
and inhibit its transcriptional activity. SET8 monomethylates p53 at K382, thereby inhibiting autophagy.
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tumor suppression following p53 activation, increased autophagic flux, 
and elevated expression of ATGs such as ATG9A. The mucolipo protein 
TRP cation channel 1 (MCOLN1)-induced autophagy inhibited mito-
chondrial damage and the subsequent massive release of ROS, which 
could activate p53 and suppress melanoma cell metastasis [134]. 
Additionally, SIRT4, a member of the Sirtuin (SIRT) family, regulated 
the expression of ATGs in pancreatic ductal adenocarcinoma cells. SIRT4 
inhibited glutamine metabolism to activate AMPK, which promoted the 
phosphorylation of p53, and thereby inducing autophagy activation and 
inhibiting of pancreatic ductal adenocarcinoma development [135]. 
Another study demonstrated that bisphenol A (BPA)/bisphenol S (BPS) 
exposure enhanced ovarian cancer cell stemness by activating non- 
classical PINK1/p53-mediated mitochondrial autophagy, which in 
turn promoted ovarian cancer metastasis in vivo [136].

Moreover, methylation of p53 at different sites affects cellular 
autophagy in various ways [131,137,138]. Monomethylation of p53 by 
SMYD2 and SET8 at lysine 370 (K370) and lysine 382(K382), respec-
tively, can inhibit its activity [139]. Additionally, SMYD2 also tran-
scriptionally represses the expression of p53 target genes and inhibites 
autophagy-associated cell death induced by Bix01294 [140]. Huang 
et al. [141] found that histone LSD1 could demethylate p53 at K370, 
preventing its interaction with the coactivator p53-binding protein 1 
(53BP1), thereby repressing p53 function. Knockdown of LSD1 activated 
cellular autophagy [142]. Lysine demethylase 3 A (KDM3A) demethy-
lated non-histone p53 at K372, inhibiting its transcriptional activity, 
thereby inducing chemoresistance in breast cancer cells [143]. The 
homologous methylases G9a and GLP could methylate p53 at K373me2, 
and reducing the levels of both increased apoptosis and inhibited the 

Fig. 6. Non-histone methylation regulates cell signaling pathways affecting autophagy. (A) PRMT1 can methylate Axin at the R378 site, increase Axin stability, and 
negatively regulate the Wnt signaling pathway mediating autophagy. PRMT7 can methylate multiple arginine sites of G3BP2, thereby up-regulating β-catenin 
expression and promoting autophagy. Plasmacytoma multiple ectopic gene 1 (PVT1) activates the Wnt/β-catenin and autophagy pathways by regulating Pygo2 and 
ATG14. (B) Under stress conditions, autophagy can enhance the autophagy protection mechanism by degrading LATS2, but continuous activation of LATS2 can lead 
to overactivation of mTORC1 and inhibition of autophagy. Set7 can monomethylate Yap at K494, which affects its autophagy transcriptional activity. KMT5A can 
mediate the methylation of SNIP1 at the K301 site and inhibit the Hippo kinase cascade, thus affecting the Hippo pathway regulation of autophagy.

Fig. 7. Regulation of non-histone methylation in autophagy. (A) Methyl groups activated by E2F1 at K117 bind to the STED6 promoter and promote the transcription 
of STED6. SETD7 methylates E2F1 at K185, preventing the accumulation of E2F1 caused by DNA damage. (B)The lysine methyltransferase SETD7 methylates HIF-1α 
at the R32 site and inhibits HIF-1α expression, thereby suppressing its induction of p53-mediated autophagy. Arginine methyltransferase PRMT3 can influence the 
stability of HIF-1α by regulating the methylation of HIF-1α at R282. Lysine methyltransferase G9a and GLP are capable of catalyzing the monomethylation and 
dimethylation of HIF-1α at K674, significantly reducing cell migration.
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transcriptional activity of p53 [144]. Additionally, SETD7 was found to 
methylate p53 at K372, activating its transcriptional activity, while 
methylation at K370 inhibited its transcriptional activity [139].

4.5. Wnt /β-catenin pathway

The Wnt signaling pathway is a complex network of protein in-
teractions primarily involved in embryonic development and cancer, 
influencing processes such as cell proliferation, autophagy, and 
apoptosis [145–147]. Regulatory feedback mechanisms between Wnt/ 
β-catenin signaling and autophagy have been explored at various levels 
[148–150]. Zhou et al. [151] demonstrated that plasmacytoma diverse 
ectodomain 1 (PVT1) enhances drug resistance in pancreatic cancer by 
modulating Pygo2 and ATG14, thereby activating the Wnt/β-catenin 
and autophagy pathways. Fan et al. [152] found that autophagy pro-
moted metastasis and glycolysis in hepatocellular carcinoma cells by 
upregulating monocarboxylate (MCT1) expression and activating the 
Wnt/β-catenin signaling pathway. Low-density lipoprotein receptor- 
related protein 6 regulated Rab7-mediated autophagy through the 
Wnt/β-catenin pathway, influencing trophoblast cell migration and in-
vasion. Petherick et al. [153] revealed in vivo studies that the accumu-
lation of β-catenin inhibited the p62/SQSTM1 promoter, thereby 
suppressing autophagy. Additionally, another study found that blocking 
Wnt signaling increased p62/SQSTM1 transcription in glioblastoma, 
leading to enhanced autophagy [154].

Recent studies have shown that Wnt/β-catenin can be by various 
methyltransferases, impacting cellular autophagy. Zhang et al. [155] 
observed that lysine-specific histone demethylase 1 A (KDM1A) deme-
thylated H3K4me1/2 in the APC2 promoter and the non-histone sub-
strate HIF-1α, downregulating Wnt pathway antagonists adenomatous 
polyposis Coli 2 (APC2) and dickkopf-related protein 1 (DKK1). This 
repression of APC2 transcription activated the HIF2α/microRNA-146a/ 
DKK1 axis. PRMT1 enhanced β-catenin binding by methylating pro-
moter R101, a member of the armadillo-repeat protein family (PKP2), 
thus promoting chemotherapy tolerance in lung cancer [156]. In 
contrast, reduced expression of PRMT7 inhibited β-catenin's symmetric 
dimethylation, contributing to cardiac hypertrophy and fibrosis in mice 
[157]. PRMT1 also directly methylated arginine 378 (R378) of the 
scaffolding protein Axin, enhancing Axin's stability and negatively 
regulating Wnt signaling [158]. In a rat model of Parkinson's disease, 
knockdown of Axin-2 modulated Wnt/β-catenin signaling, reducing 
cellular autophagy and the generation of ROS, while improving mito-
chondrial membrane potential and promoting dopaminergic neuro-
genesis [159]. Ghobashi et al. [160] demonstrated that AKT-mediated 
phosphorylation of EZH2 promoted the trimethylation of β-catenin at 
the K49 site, enhancing its binding to chromatin and influencing gene 
expression related to cell motility and metabolism.

4.6. Hippo pathway

The Hippo pathway is a conserved signaling mechanism that regu-
lates various biological processes, including cell growth, death, and 
tissue regeneration [161–164]. Recent studies suggest Hippo pathway 
also plays a role in regulating autophagy, a crucial mechanism under-
lying lysosome-mediated cellular degradation that significantly impacts 
cell growth and death responses across different cell types [78,165,166]. 
Yuan et al. [167] observed that laminar flow inhibited the Hippo/YAP 
pathway by increasing the expression of autophagy proteins such as 
Beclin-1 and LC3II/LC3I, which ultimately reducing atherosclerotic 
plaque formation in mice. Another study found that Drosophila intesti-
nal epithelial cells maintained intestinal homeostasis by eliminating p62 
through autophagy, thereby suppressing the ROS-triggered Hippo 
pathway [168]. Under stress conditions, autophagy supported β-cell 
survival by degrading large tumor suppressor 2 (LATS2), which 
enhanced the protective autophagic mechanism through positive feed-
back. However, the prolonged LATS2 stimulation overactivated 

mTORC1 and inhibited autophagy, leading to the accumulation of 
LATS2 and the apoptosis of β-cell [169]. Tang et al. [170] demonstrated 
that LATS kinase in the Hippo pathway bound to and stabilized Beclin1, 
suppressing sorafenib-induced autophagy. In breast and ovarian cancer 
cells, Hippo-YAP signaling regulated drug resistance by enhancing 
autophagic flux through increased expression of proteins such as ATG3, 
ATG5, and LC3B [171,172].

Recent studies have also shown that the Hippo pathway is modified 
by various methyltransferases, significantly impacting biological pro-
cesses including cellular autophagy. Oudhoff et al. [173] demonstrated 
that Yes-associated protein (YAP), a component of the Hippo pathway, 
interacted with the lysine methylase Set7 and was mono-methylated at 
the K494 locus. The mutant Yap (YapK494R) failed to remain in the 
cytoplasm. Methyltransferase SET1A also interacted with YAP, 
contributing to its lysine monomethylation at K342, It further YAP's 
nuclear retention and transcriptional activity [174]. Additionally, the 
lysine methyltransferase KMT5A methylated the K301 site of Smad 
nuclear-interacting protein 1 (SNIP1), inhibiting the Hippo kinase 
cascade and promoting metastasis in triple-negative breast cancer 
[175].

4.7. E2F1 pathway

E2F1 plays a critical role in cancer progression by driving cell cycle 
progression and regulating various biological processes related to pro-
liferation and malignant transformation, including cell proliferation, 
autophagy, apoptosis, and metastasis [176–178]. In mice with silicosis, 
Beclin1 expression was reduced, while levels of kinase-related protein 2 
(SKP2) and E2F1 were elevated [179,180]. MicroRNA-205-5p targeted 
E2F1, promoting autophagy by inhibiting SKP2-mediated ubiquitination 
of Beclin1. It consequently reduced pulmonary fibrosis in silicosis pa-
tients [179]. Metformin treatment prevented estrogen deficiency- 
induced upregulation of E2F1, and caused decreased levels of Beclin1 
and BNIP3 proteins. This disruption interfered with BNIP3 binding to 
BCL2 while promoting Beclin1-BCL2 binding, triggering autophagy and 
reducing bone loss [181]. Additionally, E2F1 knockdown in mice 
enhanced white adipose tissue browning by suppressing ATGs, including 
LC3II and ATG5 [182].

In NB4 acute myeloid leukemia cells, LncSIK1 recruited E2F1 pro-
teins to the promoters of LC3 and DRAM, leading to autophagy- 
dependent degradation of the oncoprotein PML-RARα and increased 
sensitivity to retinoic acid [183]. Moreover, resveratrol alleviated 
adriamycin-induced cardiotoxicity by disrupting E2F1-mediated auto-
phagy inhibition of autophagy apoptosis [184]. Numerous studies have 
shown that lysine and arginine methylations at various sites on E2F1 
affects cellular autophagy in multiple ways. Kublanovsky et al. [185] 
found that methylation of E2F1 at K117 influenced STED6 transcription, 
with methylated E2F1 binding to the STED6 promoter and stimulating 
its expression in a methylation-dependent manner. Similarly, methyl-
ation of STED6 at K99 regulated E2F1 expression, affecting the tran-
scription of genes related to mRNA translation [186]. Inhibition of 
PRMT5 decreased E2F expression and symmetric dimethylation of E2F1, 
which reduced DNA damage repair and increased apoptosis [187]. 
Additionally, lysine methyltransferase Set9 methylated E2F1 at K185, 
blocking DNA damage-induced accumulation of E2F1 and activating the 
p73 gene [188].

4.8. HIF1 pathway

HIF1 is a transcription factor with a helix-loop-helix structure that 
activates genes involved in the hypoxic response, which is essential for 
adapting to low oxygen levels. It also plays a significant role in cell 
proliferation, angiogenesis, and cellular autophagy [189,190]. The 
leucine-rich pentapeptide repeat (PPR) patterning protein (LRPPRC) 
acts as an autophagy suppressor, promoting metastasis and glycolysis by 
regulating autophagy and the ROS/HIF1α pathway in retinoblastoma 
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[189]. PTEN regulates HIF1α and mTOR via the PI3K/Akt pathway, 
reducing apoptosis and enhancing autophagy, which helps protect the 
kidney from acute injury [191]. HIF1α and histone deacetylase 4 
(HDAC4) mediate interactions between p53 and RAS to inhibit ovarian 
cancer through both apoptosis and autophagy [192]. Li et al. [193] 
demonstrated that hypoxia reduced p62 and LC3II expression, triggering 
HIF/regulated in development and DNA damage responses 1 (REDD1)/ 
mTORC1 signaling to control autophagy, which is crucial for erythroid 
differentiation. Research has shown that hypoxia damages mitochondria 

through HIF1α and regulates mitochondrial autophagy by controlling 
BNIP3 translocation to mitochondria [194].

Growing evidence suggests that PTMs of proteins can directly or 
indirectly regulate HIF-1α expression, influencing autophagosome for-
mation and autophagy. Lysine methyltransferases G9a and GLP interact 
with HIF1α, catalyzing mono- and dimethylation at the lysine 674 
(K647) site both in vitro and in vivo. Notably, methylation at K674 
significantly reduced cell migration [195]. In multiple myeloma cells, 
G9a/GLP promotes autophagy-associated apoptosis by inactivating the 

Table 2 
Inhibitors of protein methylation and their effects in autophagy.

Methyltransferases Non- 
histone 
protein 
targets

Inhibitors Chemical structure Impact to 
autophagy

Mechanisms of 
modulating 
autophagy

Cells Clinical Trial Status References

LSD1
p53 
K370me1

2-PCPA Activation

Accumulation of 
LC3II, formation 
of 
autophagosome 
and 
autolysosome, 
and SQSTM1/ 
p62 degradation

U2OS 
cells

Early-phase 
clinical trials

[203,204,205]

SP2509 Activation
Increased 
expression level 
of LC3-II protein

SH- 
SY5Y, 
SHEP 
Tet-21/ 
N cells

ZY0511 Activation
Increaseed 
expression level 
of ATG9A gene

SU-DHL- 
4,SU- 
DHL-6 
cells

SMYD2
p53 
K370me1 BIX-01294 Activation

Increased 
expression level 
of LC3B, ATG9A 
and ATG4A 
gene

HCT116 
and 
U2OS 
cells

Preclinical studies 
in cancer and 
metabolic diseases

[140]

G9a p53 
K373me1

BI2536 Inhibition

Influences 
autophagy by 
regulating 
transcription 
factors involved 
in the 
autophagic 
pathway

HeLa α 
Kyoto 
cells

Early-phase 
clinical trials in 
solid tumors

[196,208,209]

GSK461364 Inhibition

decreased 
expression level 
of LC3-I and 
LC3-II

MDA- 
MB-231 
and 
T47D 
cells

UNC0638 Activation
Increased 
expression level 
of c-MYC gene

OPM2 
cells

PRMT1
c-Fos 
R287me1

P2 Activation

Modulates 
autophagy- 
related gene 
expression

MDA- 
MB-468 
cells

Ongoing 
preclinical 
research for 
neurodegenerative 
diseases

[210]

PRMT5
ULK1 
R170 
me2

SBI- 
0206965

Inhibition
Reduction of 
autophagic 
vacuoles

A549 
cells

Clinical trials in 
hematological 
cancers and solid 
tumors

[212]

EZH2 NF-κB

GSK343 Activation
Increased 
expression level 
of LC3B gene

HCT116 
and 
DLD-1 
cells Ongoing clinical 

trials in cancer
[216,218]

DZNep Activation

Modulates 
autophagy- 
related gene 
expression

RKO and 
HCT116 
cells
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mTOR/4E-binding protein 1 (4EBP1) pathway and decreasing c-MYC 
levels [196]. Arginine methyltransferase protein arginine methyl-
transferase 3 (PRMT3) facilitates colorectal tumorigenesis by modu-
lating HIF-1α methylation at the arginine 282 (R282) site, locus and 
stabilizing its expression in colorectal cancer [197]. Additionally, lysine 
methyltransferase Set7 reduces HIF-1α expression by methylating it at 
the arginine 32 (R32) site [198].

5. Protein methylation as a therapeutic target and autophagy

Recent advancements in development of protein methyltransferase 
drugs have shown significant promise. These drugs selectively target 
specific methyltransferases, modulate autophagy, and have a crucial 
impact on inflammatory diseases, tumors, and cardiovascular and ce-
rebrovascular conditions (Table 2). The intersection of autophagy and 
protein methyltransferase-targeted therapies is a key area of research, 
with significant potential for disease treatment [199,200]. Ongoing 
research aims to further our understanding of gene expression regula-
tion mechanisms and provide novel strategies for disease management. 
Currently, Inhibitors are undergoing clinical trials for various cancers, 
with early-stage studies indicating potential efficacy in restoring auto-
phagic flux in tumor cells [201]. The therapeutic potential of targeting 
protein methylation in autophagy-related diseases, such as cancer and 
neurodegeneration, is increasingly recognized. By modulating auto-
phagic processes through the inhibition of methylation enzymes, these 
agents may offer novel strategies for restoring cellular homeostasis and 
improving disease outcomes.

LSD1, a histone demethylase, regulates autophagy through the 
demethylation of key autophagy-related proteins, such as ATG5, 
impacting the initiation of autophagy [202]. LSD1 demethylates the 
K151 site of ATG16L1, thereby activating autophagy [22]. It also 
demethylates p53 at K370 [141], and LSD1 knockdown increases 
ATG4B proteolytic activity, LC3II protein levels, and autophagy acti-
vation [142]. LSD1 inhibitors, such as 2-PCPA, GSK-LSD1, and SP2509, 
can promote LC3II accumulation, autophagosome and autolysosome 
formation, and activate autophagy [203,204]. Additionally, the LSD1 
inhibitor ZY0511 promotes autophagy by upregulating ATG9A gene 
expression and inhibiting the proliferation of diffuse large B-cell lym-
phoma proliferation [205]. Lysine methyltransferase SMYD2 regulates 
tumor cell proliferation by monomethylating p53 at Lys370 
(p53K370me1), thereby inhibiting its activity [206]. The small molecule 
BIX-01294 induces autophagy-related cell death, selectively activates 
p53 target genes, and inhibits SMYD2-mediated target gene activation. 
SMYD2 deficiency enhances p53 recruitment to p21 promoter, pro-
moting autophagy-mediated cell death triggered by BIX-01294 [140]. 
The protein methyltransferase G9a can dimethylate p53 at Lys373, 
increasing the expression of polo-like kinase 1 (PLK1) expression and 
promoting colorectal cancer cell growth [207]. Inhibitors such as 
BI2536 and GSK461364 target PLK1, significantly reducing LC3II levels 
and inhibiting cellular autophagy [208,209]. G9a/GLP inhibitors, such 
as BIX01294 and UNC0638, can induce G1 phase arrest and apoptosis in 
multiple myeloma cells, reduce c-MYC expression, and enhance cellular 
autophagy [196].

PRMT1 methylates c-Fos at R287, protecting it from autophagic 
degradation. The autophagy inhibitor 3-MA enhances PRMT1-mediated 
c-Fos/AP-1 activity, resulting in increased c-Fos protein levels [106]. 
Brekker et al. [20] have constructed compound P2, which could selec-
tively inhibited PRMT1 expression, induce LC3 expression in MDA468 
cells, and promoted cellular autophagy [210]. PRMT5 catalyzes the 
symmetric dimethylation of the autophagy initiation protein ULK1 at 
arginine 170 (R170me2s), leading to the phosphorylation of ATG13 and 
Beclin 1, finally promoting autophagosome formation and autophagy. 
The ULK1 inhibitor SBI-0206965 mitigates its apoptosis [211]. Egan 
et al. [212] showed that SBI-0206965 could inhibit ULK 1-mediated 
phosphorylation events in cells, regulating autophagy and cell survival 
through the ULK1-Beclin1/VPS34 pathways.

EZH2, a methyltransferase, modulates autophagy via H3K27 
methylation of transcription factors involved in autophagy regulation 
[213]. EZH2 is a key histone methyltransferase that promotes glioma 
stem cell-like self- renewal by methylating NF-κB [214]. Inhibitors tar-
geting EZH2, such as GSK343, have shown promise in cancer treatment. 
GSK343 reduces glioblastoma cell viability and NF-κB protein expres-
sion, highlighting its potential as a therapeutic agent in glioblastoma 
[215]. Additionally, Hsieh et al. [216] showed that GSK343 could up- 
regulate. The expression of the LC3B gene, thereby inducing auto-
phagy and promoting cell death in colorectal cancer cells. In bone 
marrow-derived macrophages, the EZH2 inhibitor 3-Deazaneplanocin A 
(DZNep) promotes IKKα/β and IκB phosphorylation, leading to NF-κB 
nuclear translocation. This process enhances osteoclast formation in 
response to Receptor Activator of Nuclear Factor Kappa-β Ligand 
(RANKL) [217]. Furthermore, treatment of RKO and HCT116 cells with 
DZNep significantly increases LC3 II protein levels, inducing both 
autophagy and apoptosis [218].

6. The artificial intelligence in studying non-histone 
methylation and autophagy

Recent advancements in high-throughput technologies have signifi-
cantly increased the amount of data generated in biology and biotech-
nology [219]. These data include complex datasets from DNA, RNA, 
proteins, and metabolites, requiring sophisticated analytical tools to 
uncover their roles in cellular processes [220]. Artificial intelligence 
(AI), particularly machine learning models like artificial neural net-
works, has emerged as a powerful tool to analyze omics data, including 
genomics and proteomics [221]. AI can handle large, noisy datasets and 
reveal complex patterns that traditional statistical methods might miss 
[222].

In the context of autophagy regulation, AI-driven approaches have 
been applied to predict protein interactions, model signaling pathways, 
and identify post-translational modifications (PTMs) with potential 
regulatory effects [223]. For example, AI methods have been used to 
prioritize potential non-histone protein methylation sites and predict 
their functional roles in autophagy-related signaling cascades [224]. 
Moreover, integrating AI with omics datasets could accelerate the dis-
covery of novel targets for therapeutic intervention in diseases associ-
ated with autophagy dysregulation [225].

The integration of AI technologies into functional genomics and 
proteomics has enabled researchers to explore the dynamic roles of non- 
histone protein methylation in autophagy more comprehensively [226]. 
AI tools have been employed to predict interactions between methyl-
transferases and target proteins, evaluate the impact of these in-
teractions on autophagy-related pathways, and identify novel regulatory 
mechanisms [227]. Such approaches not only enhance our under-
standing of PTMs but also pave the way for developing targeted thera-
pies for autophagy-associated diseases.

7. Conclusion and future perspectives

So far, significant progress has been made in understanding how 
autophagy regulates cell growth, particularly in metabolism and tumor 
metastasis. The process of autophagy involves various types of protein 
PTMs of proteins, including initiation, autophagosome formation, sub-
strate recognition, and degradation. Among them, lysine and arginine 
methylation modifications on non-histone proteins play specific roles at 
different stages of autophagy, affecting both non-histone and ATG pro-
teins. These modifications influence the direct alteration of cytosolic 
proteins and the epigenetic regulation of target gene transcription. 
However, our current understanding has remained in its early stages, 
and several issues persist in the research on non-histone methylation and 
its role in regulating autophagy. For instance, the effects and mecha-
nisms of non-histone methylation in autophagy are diverse and complex, 
often showing contradictory effects in promoting or inhibiting tumor 
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metastasis. Furthermore, the function of methylation modification has 
been varying with the specific site and the interacting enzyme. In 
addition, epigenetic changes in autophagy and cell signaling pathways 
are yet fully understood. Identifying new methylation sites is crucial for 
achieving a more comprehensive understanding of their functions.

Autophagy is a dynamic process, and targeting genes at different 
stages can lead to varying effects. It is important to explore how non- 
histone methylation affects autophagy different cells and diseases, as 
well as its role in tumor metastasis. Comprehensive and systematic 
research on non-histone methylation modifications could provide new 
insights into autophagy and uncover potential therapeutic targets for 
related diseases. Therefore, summarizing the current understanding of 
non-histone methylation in autophagy and identifying future research 
directions are essential.
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